Skip to main content

Arithmetic invariant theory

  • Chapter
  • First Online:
Symmetry: Representation Theory and Its Applications

Part of the book series: Progress in Mathematics ((PM,volume 257))

Abstract

Let k be a field, let G be a reductive algebraic group over k, and let V be a linear representation of G. Geometric invariant theory involves the study of the k-algebra of G-invariant polynomials on V, and the relation between these invariants and the G-orbits on V, usually under the hypothesis that the base field k is algebraically closed. In favorable cases, one can determine the geometric quotient \(V /\!/G = \mathrm{Spec}(\mathrm{Sym}^{{\ast}}(V ^{\vee })^{G})\) and can identify certain fibers of the morphism \(V \rightarrow V/\!/G\) with certain G-orbits on V. In this paper we study the analogous problem when k is not algebraically closed. The additional complexity that arises in the orbit picture in this scenario is what we refer to as arithmetic invariant theory. We illustrate some of the issues that arise by considering the regular semisimple orbits—i.e., the closed orbits whose stabilizers have minimal dimension—in three arithmetically rich representations of the split odd special orthogonal group \(G = \mathrm{SO}_{2n+1}\).

To Nolan Wallach

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bhargava and W. Ho, Coregular spaces and genus one curves, ArXiv:1306.4424 (2013).

    Google Scholar 

  2. M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, ArXiv: 1006.1002 (2010); to appear Annals of Math.

    Google Scholar 

  3. N. Bourbaki, Groupes et algèbres de Lie, Hermann, 1982.

    Google Scholar 

  4. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves I, J. Reine Angew. Math. 212 (1963), 7–25.

    Google Scholar 

  5. R. Bolling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig gross werden, Math. Nachr. 67 (1975), 157–179.

    Google Scholar 

  6. D. A. Buell, Binary Quadratic Forms: Classical Theory and Modern Computations, Springer-Verlag, 1989.

    Google Scholar 

  7. R. Donagi, Group law on the intersection of two quadrics, Annali della Scuola Normale Superiore di Pisa 7 (1980), 217–239.

    Google Scholar 

  8. B. Gross, On Bhargava’s representations and Vinberg’s invariant theory, In: Frontiers of Mathematical Sciences, International Press (2011), 317–321.

    Google Scholar 

  9. B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series II, Math. Ann. 278 (1987), 497–562.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), 611–650.

    Google Scholar 

  11. A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, AMS Colloquium Publications 44, 1998.

    Google Scholar 

  12. A. Kostrikin and P. H. Tiep, Orthogonal decompositions and integral lattices, deGruyter Expositions in Mathematics 15, Berlin, 1994.

    Google Scholar 

  13. R. Langlands, Stable conjugacy—definitions and lemmas, Canadian J. Math 31 (1979), 700–725.

    Google Scholar 

  14. R. Langlands, Les débuts d’une formule des traces stable, Publ. Math. de L’Univ. Paris VII, 13, 1983.

    Google Scholar 

  15. A. Miller, Knots and arithmetic invariant theory, preprint.

    Google Scholar 

  16. J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer Ergebnisse 73, 1970.

    Google Scholar 

  17. D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Springer Ergebnisse 34, 1994.

    Google Scholar 

  18. D. Panyushev, On invariant theory of θ-groups, J. Algebra 283 (2005), 655–670.

    Google Scholar 

  19. V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics 139, Academic Press, Inc., Boston, MA, 1994.

    Google Scholar 

  20. V. L. Popov and E. B. Vinberg, Invariant Theory in Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, 1994.

    Google Scholar 

  21. J-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, 2002.

    Google Scholar 

  22. J-P. Serre, A Course in Arithmetic, Springer GTM 7, (1978).

    Google Scholar 

  23. D. Shelstad Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup. 12 (1979), 1–31.

    Google Scholar 

  24. M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith 98 (2001), 245–277.

    Google Scholar 

  25. M. Wood, Moduli spaces for rings and ideals, Ph.D. thesis, Princeton University, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhargava, M., Gross, B.H. (2014). Arithmetic invariant theory. In: Howe, R., Hunziker, M., Willenbring, J. (eds) Symmetry: Representation Theory and Its Applications. Progress in Mathematics, vol 257. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-1590-3_3

Download citation

Publish with us

Policies and ethics