Skip to main content

Lower Gastrointestinal Tract

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

By conventional definition, the lower gastrointestinal (GI) tract includes the appendix, entire colon and anus. Diseases involving these organs are traditionally classified into nonneoplastic and neoplastic categories. Clinical application of immunohistochemistry (IHC) is most useful in the diagnosis of neoplastic lesions, with a few exceptions such as to identify of viral pathogens in infectious colitis and to facilitate diagnosis of Hirschsprung’s disease. For diagnosis of neoplasm, IHC is particularly useful in several aspects: (1) to help confirm glandular dysplasia associated with inflammatory bowel disease (IBD) and to differentiate it from sporadic adenoma in challenging cases; (2) to confirm diagnosis and grade of neuroendocrine tumors; (3) to confirm diagnosis of a poorly differentiated or undifferentiated colonic adenocarcinoma variant, such as medullary carcinoma; (4) to help differentiate commonly encountered benign and malignant primary mesenchymal tumors; and, (5) most importantly, to differentiate primary carcinomas from various morphological mimickers from other organ systems, such as carcinomas of the gynecological and genitourinary systems.

In this chapter, we provide an overview of the most useful markers in the diagnosis of lower GI tract diseases, albeit many of them are shared with the upper GI chapter. The content is organized into 18 diagnostic issues frequently encountered in daily practice. The use of both individual markers and other relevant markers to form effective panels to address specific diagnostic challenges are illustrated in a tabular format. Concise notes with representative microscopic pictures are included whenever deemed necessary. Not included in this chapter are several important markers with prognostic implication in the diagnosis of colon adenocarcinomas, including mismatch repair (MMR) proteins for microsatellite instability (MSI) detection and mutation-specific antibodies for BRAF and KRAS. They will be discussed in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mai KT, Burns BF. Development of dysplastic mucinous epithelium from endometriosis of the appendix. Histopathology. 1999;35(4):368–72.

    Article  CAS  PubMed  Google Scholar 

  2. McCluggage WG, Clements WD. Endosalpingiosis of the colon and appendix. Histopathology. 2001;39(6):465–646.

    Article  Google Scholar 

  3. Volante M, Righi L, Asioli S, et al. Goblet cell carcinoids and other mixed neuroendocrine/nonneuroendocrine neoplasms. Virchows Arch. 2007;451 Suppl 1:S61–9.

    Article  PubMed  Google Scholar 

  4. Tang LH, Shia J, Soslow RA, et al. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol. 2008;32(10):1429–43.

    Article  PubMed  Google Scholar 

  5. Vang R, Gown AM, Wu LS, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol. 2006;19(11):1421–8.

    CAS  PubMed  Google Scholar 

  6. Fraggetta F, Pelosi G, Cafici A, Scollo P, Nuciforo P, Viale G. CDX2 immunoreactivity in primary and metastatic ovarian mucinous tumours. Virchows Arch. 2003;443(6):782–6.

    Article  CAS  PubMed  Google Scholar 

  7. Vang R, Gown AM, Barry TS, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30(9):1130–9.

    Article  PubMed  Google Scholar 

  8. Lee MJ, Lee HS, Kim WH, Choi Y, Yang M. Expression of mucins and cytokeratins in primary carcinomas of the digestive system. Mod Pathol. 2003;16(5):403–10.

    Article  PubMed  Google Scholar 

  9. Goldstein NS, Bassi D, Uzieblo A. WT1 is an integral component of an antibody panel to distinguish pancreaticobiliary and some ovarian epithelial neoplasms. Am J Clin Pathol. 2001;116(2):246–52.

    Article  CAS  PubMed  Google Scholar 

  10. Guerrieri C, Franlund B, Fristedt S, Gillooley JF, Boeryd B. Mucinous tumors of the vermiform appendix and ovary, and pseudomyxoma peritonei: histogenetic implications of cytokeratin 7 expression. Hum Pathol. 1997;28(9):1039–45.

    Article  CAS  PubMed  Google Scholar 

  11. Ronnett BM, Kurman RJ, Shmookler BM, Sugarbaker PH, Young RH. The morphologic spectrum of ovarian metastases of appendiceal adenocarcinomas: a clinicopathologic and immunohistochemical analysis of tumors often misinterpreted as primary ovarian tumors or metastatic tumors from other gastrointestinal sites. Am J Surg Pathol. 1997;21(10):1144–55.

    Article  CAS  PubMed  Google Scholar 

  12. Seidman JD, Elsayed AM, Sobin LH, Tavassoli FA. Association of mucinous tumors of the ovary and appendix. A clinicopathologic study of 25 cases. Am J Surg Pathol. 1993;17(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  13. Elias KM, Labidi-Galy SI, Vitonis AF, et al. Prior appendectomy does not protect against subsequent development of malignant or borderline mucinous ovarian neoplasms. Gynecol Oncol. 2014;132(2):328–33.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Su MC, Yuan RH, Lin CY, Jeng YM. Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol. 2008;21(11):1379–86.

    Article  CAS  PubMed  Google Scholar 

  15. Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT. Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol. 2012;138(2):211–22.

    Article  PubMed  Google Scholar 

  16. Magnusson K, de Wit M, Brennan DJ, et al. SATB2 in combination with cytokeratin 20 identifies over 95 % of all colorectal carcinomas. Am J Surg Pathol. 2011;35(7):937–48.

    Article  PubMed  Google Scholar 

  17. Lin F, Shi J, Zhu S, et al. Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 2014;138(8):1015–26.

    Article  PubMed  Google Scholar 

  18. Cathro HP, Stoler MH. Expression of cytokeratins 7 and 20 in ovarian neoplasia. Am J Clin Pathol. 2002;117(6):944–51.

    Article  CAS  PubMed  Google Scholar 

  19. Kapur RP, Reed RC, Finn L, et al. Calretinin immunohistochemisty versus acetylcholinersterase histochemistry in the elevation of suction rectal biopsies for Hirschsprung disease. Pediatr Dev Pathol. 2009;12(1):6–15.

    Article  PubMed  Google Scholar 

  20. Monforte-Munoz H, Gonzalez-Gomez I, Rowland JM, Landing BH. Increased submucosal nerve trunk caliber in aganglionosis: a “positive” and objective finding in suction biopsies and segmental resections in Hirschsprung's disease. Arch Pathol Lab Med. 1998;122(8):721–5.

    CAS  PubMed  Google Scholar 

  21. MacKenzie JM, Dixon MF. An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology. 1987;11(10):1055–66.

    Article  CAS  PubMed  Google Scholar 

  22. Guinard-Samuel V, Bonnard A, De Lagausie P, et al. Calretinin immunohistochemistry: a simple and efficient tool to diagnose Hirschsprung disease. Mod Pathol. 2009;22(10):1379–84.

    Article  CAS  PubMed  Google Scholar 

  23. Taliano RJ, LeGolvan M, Resnick MB. Immunohistochemistry of colorectal carcinoma: current practice and evolving applications. Hum Pathol. 2013;44(2):151–63.

    Article  CAS  PubMed  Google Scholar 

  24. Winn B, Tavares R, Fanion J, et al. Differentiating the undifferentiated: immunohistochemical profile of medullary carcinoma of the colon with an emphasis on intestinal differentiation. Hum Pathol. 2009;40(3):398–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lugli A, Tzankov A, Zlobec I, Terracciano LM. Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod Pathol. 2008;21(11):1403–12.

    Article  CAS  PubMed  Google Scholar 

  26. Hinoi T, Tani M, Lucas PC, et al. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am J Pathol. 2001;159(6):2239–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McGregor DK, Wu TT, Rashid A, Luthra R, Hamilton SR. Reduced expression of cytokeratin 20 in colorectal carcinomas with high levels of microsatellite instability. Am J Surg Pathol. 2004;28(6):712–8.

    Article  PubMed  Google Scholar 

  28. Wright CL, Stewart ID. Histopathology and mismatch repair status of 458 consecutive colorectal carcinomas. Am J Surg Pathol. 2003;27(11):1393–406.

    Article  PubMed  Google Scholar 

  29. Sakamoto K, Watanabe M, De La Gruz C, et al. Primary invasive micropapillary carcinoma of the colon. Histopathology. 2005;47(5):479–84.

    Article  CAS  PubMed  Google Scholar 

  30. Wen P, Xu Y, Frankel WL, Shen R. Invasive micropapillary carcinoma of the sigmoid colon: distinct morphology and aggressive behavior. Int J Clin Exp Pathol. 2008;1(5):457–60.

    PubMed Central  PubMed  Google Scholar 

  31. Inamura K, Satoh Y, Okumura S, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol. 2005;29(5):660–5.

    Article  PubMed  Google Scholar 

  32. Tan J, Sidhu G, Greco MA, Ballard H, Wieczorek R. Villin, cytokeratin 7, and cytokeratin 20 expression in pulmonary adenocarcinoma with ultrastructural evidence of microvilli with rootlets. Hum Pathol. 1998;29(4):390–6.

    Article  CAS  PubMed  Google Scholar 

  33. Yatabe Y, Koga T, Mitsudomi T, Takahashi T. CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. J Pathol. 2004;203(2):645–52.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Shi J, Wilkerson M, et al. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138(1):57–64.

    Article  PubMed  Google Scholar 

  35. Nishizuka S, Chen ST, Gwadry FG, et al. Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res. 2003;63(17):5243–50.

    CAS  PubMed  Google Scholar 

  36. Suh N, Yang XJ, Tretiakova MS, Humphrey PA, Wang HL. Value of CDX2, villin, and alpha-methylacyl coenzyme A racemase immunostains in the distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Mod Pathol. 2005;18(9):1217–22.

    Article  CAS  PubMed  Google Scholar 

  37. Wang HL, Lu DW, Yerian LM, et al. Immunohistochemical distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Am J Surg Pathol. 2001;25(11):1380–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gopalan A, Sharp DS, Fine SW, et al. Urachal carcinoma:a clinicopathologic analysis of 24 cases with outcome correlation. Am J Surg Pathol. 2009;33(5):659–68.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Paner GP, Mckenney JK, Barkan GA, et al. Immunohistochemical analysis in a morphologic spectrum of urachal epithelial neoplasms: diagnostic implication and pitfalls. Am J Surg Pathol. 2011;35(6):787–98.

    Article  PubMed  Google Scholar 

  40. Pancione M, Forte N, Fucci A, et al. Prognostic role of beta-catenin and p53 expression in the metastatic progression of sporadic colorectal cancer. Hum Pathol. 2010;41(6):867–76.

    Article  CAS  PubMed  Google Scholar 

  41. Gurel B, Ali TZ, Montgomery EA, et al. NKX3.1 as a marker of prostate origin in metastatic tumors. Am J Surg Pathol. 2010;34(8):1097–105.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hameed O, Humphrey PA. Immunohistochemistry in diagnostic surgical pathology of prostate. Semin Diagn Pathol. 2005;22(1):88–104.

    Article  PubMed  Google Scholar 

  43. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  44. Ordonez NG. Immunohistochemical diagnosis of epithelioid mesothelioma: an update. Arch Pathol Lab Med. 2005;129(11):1407–14.

    PubMed  Google Scholar 

  45. Ordonez NG. Value of cytokeratin 5/6 immunostaining in distinguishing epithelial mesothelioma of the pleura from lung adenocarcinoma. Am J Surg Pathol. 1998;22(10):1215–21.

    Article  CAS  PubMed  Google Scholar 

  46. Barbareschi M, Roldo C, Zamboni G, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol. 2004;28(9):1169–76.

    Article  PubMed  Google Scholar 

  47. Chan ES, Alexander J, Swanson PE, Jain D, Yeh MM. PDX-1, CDX-2, TTF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms. Am J Surg Pathol. 2012;36(5):737–43.

    Article  PubMed  Google Scholar 

  48. Denby KS, Briones AJ, Bourne PA, et al. IMP3, NESP55, TTF-1 and CDX2 serve as an immunohistochemical panel in the distinction among small-cell carcinoma, gastrointestinal carcinoid, and pancreatic endocrine tumor metastasized to the liver. Appl Immunohistochem Mol Morphol. 2012;20(6):573–9.

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Zhou K, Mei K, Kang Q, Cao D. SATB2 is a highly sensitive marker for hindgut well-differentiated neuroendocrine tumors [USCAP abstract 682]. Mod Pathol. 2013;26(S2):164A.

    Google Scholar 

  50. Gibson JA, Hornick JL. Mucosal Schwann cell “hamartoma”: clinicopathologic study of 26 neural colorectal polyps distinct from neurofibromas and mucosal neuromas. Am J Surg Pathol. 2009;33(5):781–7.

    Article  PubMed  Google Scholar 

  51. Hornick JL, Fletcher CD. Intestinal perineuriomas: clinicopathologic definition of a new anatomic subset in a series of 10 cases. Am J Surg Pathol. 2005;29(7):859–65.

    Article  PubMed  Google Scholar 

  52. Groisman GM, Polak-Charcon S. Fibroblastic polyp of the colon and colonic perineurioma: 2 names for a single entity? Am J Surg Pathol. 2008;32(7):1088–94.

    Article  PubMed  Google Scholar 

  53. Agaimy A, Stoehr R, Vieth M, et al. Benign serrated colorectal fibroblastic polyps/intramucosal perineuriomas are true mixed epithelial-stromal polyps (hybrid hyperplastic polyp/mucosal perineurioma) with frequent BRAF mutations. Am J Surg Pathol. 2010;34(11):1663–71.

    PubMed  Google Scholar 

  54. Miettinen M, Sobin LH, Sarlomo-Rikala M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod Pathol. 2000;13(10):1134–42.

    Article  CAS  PubMed  Google Scholar 

  55. Miettinen M, Furlong M, Sarlomo-Rikala M, Burke A, Sobin LH, Lasota J. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol. 2001;25(9):1121–33.

    Article  CAS  PubMed  Google Scholar 

  56. Ramos da Silva S, Bacchi MM, Bacchi CE, Elgui de Oliveira D. Human bcl-2 expression, cleaved caspase-3, and KSHV LANA-1 in Kaposi sarcoma lesions. Am J Clin Pathol. 2007;128(5):794–802.

    Article  CAS  PubMed  Google Scholar 

  57. Shekitka KM, Sobin LH. Ganglioneuromas of the gastrointestinal tract. Relation to Von Recklinghausen disease and other multiple tumor syndromes. Am J Surg Pathol. 1994;18(3):250–7.

    Article  CAS  PubMed  Google Scholar 

  58. Parfitt JR, Rodriguez-Justo M, Feakins R, Novelli MR. Gastrointestinal Kaposi's sarcoma: CD117 expression and the potential for misdiagnosis as gastrointestinal stromal tumour. Histopathology. 2008;52(7):816–23.

    Article  CAS  PubMed  Google Scholar 

  59. Shidham VB, Chivukula M, Gupta D, Rao RN, Komorowski R. Immunohistochemical comparison of gastrointestinal stromal tumor and solitary fibrous tumor. Arch Pathol Lab Med. 2002;126(10):1189–92.

    PubMed  Google Scholar 

  60. Marx A, Wandrey T, Simon P, et al. Combined alpha-methylacyl coenzyme A racemase/p53 analysis to identify dysplasia in inflammatory bowel disease. Hum Pathol. 2009;40(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  61. Dorer R, Odze RD. AMACR immunostaining is useful in detecting dysplastic epithelium in Barrett's esophagus, ulcerative colitis, and Crohn’s disease. Am J Surg Pathol. 2006;30(7):871–7.

    Article  PubMed  Google Scholar 

  62. Wong NA, Mayer NJ, MacKell S, Gilmour HM, Harrison DJ. Immunohistochemical assessment of Ki67 and p53 expression assists the diagnosis and grading of ulcerative colitis-related dysplasia. Histopathology. 2000;37(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  63. Harpaz N, Peck AL, Yin J, et al. p53 protein expression in ulcerative colitis-associated colorectal dysplasia and carcinoma. Hum Pathol. 1994;25(10):1069–74.

    Article  CAS  PubMed  Google Scholar 

  64. Bruwer M, Schmid KW, Senninger N, Schurmann G. Immunohistochemical expression of P53 and oncogenes in ulcerative colitis-associated colorectal carcinoma. World J Surg. 2002;26(3):390–6.

    Article  PubMed  Google Scholar 

  65. Walsh SV, Load M, Torres CM, Antoioli D, Odze RD. p53 and beta-catenin expression in chronic ulcerative colitis-associated polypoid dysplasia and sporadic adenomas: an immunohistochemical study. Am J Surg Pathol. 1999;23(8):963–9.

    Article  CAS  PubMed  Google Scholar 

  66. Noffshinger AE, Belli JM, Miller MA, Fenoglio-Preiser CM. A unique basal pattern of p53 expression in ulcerative colitis is associated with mutation in the p53 gene. Histopathology. 2001;39(5):482–92.

    Article  Google Scholar 

  67. Van Schaik FD, et al. Role of immunohistochemical markers in predicting progression of dysplasia to advanced neoplasia in patients with ulcerative colitis. Inflamm Bowel Dis. 2012;18(3):480–8.

    Article  PubMed  Google Scholar 

  68. Xie H. Diagnostic utility of TP53 and cytokeratin 7 immunohistochemistry in idiopathic inflammatory bowel disease-associated neoplasia. Mod Pathol. 2014;27(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  69. Shia J. An update on tumors of the anal canal. Arch Pathol Lab Med. 2010;134(11):1601–11.

    PubMed  Google Scholar 

  70. Hobbs CM, Lowry MA, Owen D, Sobin LH. Anal gland carcinoma. Cancer. 2001;92(8):2045–9.

    Article  CAS  PubMed  Google Scholar 

  71. Lisovsky M, Patel K, Cymes K, Chase D, Bhuiya T, Morgenstern N. Immunophenotypic characterization of anal gland carcinoma: loss of p63 and cytokeratin 5/6. Arch Pathol Lab Med. 2007;131(8):1304–11.

    PubMed  Google Scholar 

  72. Balachandra B, Marcus V, Jass JR. Poorly differentiated tumors of the anal canal: a diagnostic strategy for the surgical pathologist. Histopathology. 2007;50(1):163–74.

    Article  CAS  PubMed  Google Scholar 

  73. Meriden Z, Montgomery EA. Anal duct carcinoma: a report of 5 cases. Hum Pathol. 2012;43(2):216–20.

    Article  PubMed  Google Scholar 

  74. Ohnishi T, Watanabe S. The use of cytokeratins 7 and 20 in the diagnosis of primary and secondary extramammary Paget's disease. Br J Dermatol. 2000;142(2):243–7.

    Article  CAS  PubMed  Google Scholar 

  75. Nowak MA, Guerriere-Kovach P, Pathan A, Campbell TE, Deppisch LM. Perianal Paget’s disease: distinguishing primary and secondary lesions using immunohistochemical studies including gross cystic disease fluid protein-15 and cytokeratin 20 expression. Arch Pathol Lab Med. 1998;122(12):1077–81.

    CAS  PubMed  Google Scholar 

  76. Goldblum JR, Hart WR. Perianal Paget’s disease: a histologic and immunohistochemical study of 11 cases with and without associated rectal adenocarcinoma. Am J Surg Pathol. 1998;22(2):170–9.

    Article  CAS  PubMed  Google Scholar 

  77. Battles OE, Page DL, Johnson JE. Cytokeratins, CEA, and mucin histochemistry in the diagnosis and characterization of extramammary Paget’s disease. Am J Clin Pathol. 1997;108(1):6–12.

    CAS  PubMed  Google Scholar 

  78. Kaufmann O, Fietze E, Mengs J, Dietel M. Value of p63 and cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis of poorly differentiated and undifferentiated carcinomas. Am J Clin Pathol. 2001;116(6):823–30.

    Article  CAS  PubMed  Google Scholar 

  79. De la Garza Bravo MM, Curry JL, Torres-Cabala CA, et al. Pigmented extramammary Paget disease of the thigh mimicking a melanocytic tumor: report of a case and review of the literature. J Cutan Pathol. 2014;41(6): 529–535. doi:10.1111/cup.12333.

  80. Longacre TA, Kong CS, Welton ML. Diagnostic problems in anal pathology. Adv Anat Pathol. 2008;15(5):263–78.

    Article  PubMed  Google Scholar 

  81. Chute DJ, Cousar JB, Mills SE. Anorectal malignant melanoma: morphologic and immunohistochemical features. Am J Clin Pathol. 2006;126(1):93–100.

    Article  PubMed  Google Scholar 

  82. Owens SR, Greenson JK. Immunohistochemical staining for p63 is useful in the diagnosis of anal squamous cell carcinomas. Am J Surg Pathol. 2007;31(2):285–90.

    Article  PubMed  Google Scholar 

  83. Long KB, Hornick JL. SOX2 is highly expressed in squamous cell carcinomas of the gastrointestinal tract. Hum Pathol. 2009;40(12):1768–73.

    Article  CAS  PubMed  Google Scholar 

  84. Patil DT, Goldblum JR, Billings SD. Clinicopathological analysis of basal cell carcinoma of the anal region and its distinction from basaloid squamous cell carcinoma. Mod Pathol. 2013;26(10):1382–9.

    Article  CAS  PubMed  Google Scholar 

  85. Nazarian RM, Primiani A, Doyle LA, et al. Cytokeratin 17: an adjunctive marker of invasion in squamous neoplastic lesions of the anus. Am J Surg Pathol. 2014;38(1):78–85.

    Article  PubMed  Google Scholar 

  86. Smith KJ, Tuur S, Corvette D, Lupton GP, Skelton HG. Cytokeratin 7 staining in mammary and extramammary Paget's disease. Mod Pathol. 1997;10(11):1069–74.

    CAS  PubMed  Google Scholar 

  87. Linskey KR, Gimbel DC, Zukerberg LR, Duncan LM, Sadow PM, Nazarian RM. BerEp4, cytokeratin 14, and cytokeratin 17 immunohistochemical staining aid in differentiation of basaloid squamous cell carcinoma from basal cell carcinoma with squamous metaplasia. Arch Pathol Lab Med. 2013;137(11):1591–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongming E. Chen MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Z.E., Li, J., Lin, F. (2015). Lower Gastrointestinal Tract. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1578-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1578-1_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1577-4

  • Online ISBN: 978-1-4939-1578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics