Skip to main content

Abstract

This chapter is an overview of frequently used markers in the differential diagnosis of both common and less common tumors of the ovary, with a focus on the effective markers employed to differentiate epithelial surface tumors, sex cord-stromal tumors and germ cell tumors. Useful panels in the differential diagnosis of mucinous tumors, germ cell and gonadal stromal tumors, and tumors with clear cell morphology are also addressed. There are 44 tables in this chapter with immunohistochemical markers answering questions that may arise when examining hematoxylin and eosin-stained sections. A summary of useful and frequently used biomarkers with potential pitfalls enables pathologists to effectively choose diagnostic panels of antibodies with the aim of improving diagnostic accuracy and reproducibility. Effective diagnostic panels of antibodies for several entities are highlighted in numerous tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCluggage WG, Young RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol. 2005;22(1):3–32.

    PubMed  Google Scholar 

  2. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27(2):161–74.

    PubMed  Google Scholar 

  3. Baker PM, Oliva E. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Int J Gynecol Pathol. 2005;24(1):39–55.

    PubMed  Google Scholar 

  4. Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.

    PubMed  Google Scholar 

  5. Cathro HP, Stoler MH. Expression of cytokeratins 7 and 20 in ovarian neoplasia. Am J Clin Pathol. 2002;117(6):944–51.

    CAS  PubMed  Google Scholar 

  6. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    CAS  PubMed  Google Scholar 

  7. Moll R, Lowe A, Laufer J, Franke WW. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol. 1992;140(2):427–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colonic and breast origin. Comparison between a statistical and an intuitive approach. J Clin Pathol. 1999;52(4):283–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Wauters CC, Smedts F, Gerrits LG, Bosman FT, Ramaekers FC. Keratins 7 and 20 as diagnostic markers of carcinomas metastatic to the ovary. Hum Pathol. 1995;26(8):852–5.

    CAS  PubMed  Google Scholar 

  10. Riedel I, Czernobilsky B, Lifschitz-Mercer B, et al. Brenner tumors but not transitional cell carcinomas of the ovary show urothelial differentiation: immunohistochemical staining of urothelial markers, including cytokeratins and uroplakins. Virchows Arch. 2001;438(2):181–91.

    CAS  PubMed  Google Scholar 

  11. Ordonez NG. Transitional cell carcinomas of the ovary and bladder are immunophenotypically different. Histopathology. 2000;36(5):433–8.

    CAS  PubMed  Google Scholar 

  12. McCluggage WG. My approach to and thoughts on the typing of ovarian carcinomas. J Clin Pathol. 2008;61(2):152–63.

    CAS  PubMed  Google Scholar 

  13. Manivel JC, Niehans G, Wick MR, Dehner LP. Intermediate trophoblast in germ cell neoplasms. Am J Surg Pathol. 1987;11(9):693–701.

    CAS  PubMed  Google Scholar 

  14. Kalhor N, Ramirez PT, Deavers MT, Malpica A, Silva EG. Immunohistochemical studies of trophoblastic tumors. Am J Surg Pathol. 2009;33(4):633–8.

    PubMed  Google Scholar 

  15. Southgate J, Harnden P, Trejdosiewicz LK. Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnostic implications. Histol Histopathol. 1999;14(2):657–64.

    CAS  PubMed  Google Scholar 

  16. McKenney JK, Desai S, Cohen C, Amin MB. Discriminatory immunohistochemical staining of urothelial carcinoma in situ and non-neoplastic urothelium: an analysis of cytokeratin 20, p53, and CD44 antigens. Am J Surg Pathol. 2001;25(8):1074–8.

    CAS  PubMed  Google Scholar 

  17. Parker DC, Folpe AL, Bell J, et al. Potential utility of uroplakin III, thrombomodulin, high molecular weight cytokeratin, and cytokeratin 20 in noninvasive, invasive, and metastatic urothelial (transitional cell) carcinomas. Am J Surg Pathol. 2003;27(1):1–10.

    PubMed  Google Scholar 

  18. McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43(5):420–32.

    PubMed  Google Scholar 

  19. Rabban JT, Longacre T. Immunohistology of the female genital tract. In: Dabbs DJ, editor. Diagnostic immunohistochemistry—thranostic and genomic applications. 4th ed. Philadelphia, PA: Elsevier Saunders; 2014. p. 653–709.

    Google Scholar 

  20. McCluggage WG. The pathology of and controversial aspects of ovarian borderline tumours. Curr Opin Oncol. 2010;22:462–742.

    PubMed  Google Scholar 

  21. Nonaka D, Chiriboga L, Soslow RA. Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32(10):1566–71.

    PubMed  Google Scholar 

  22. Roh MH, Kindelberger D, Crum CP. Serous tubal intraepithelial carcinoma and the dominant ovarian mass: clues to serous tumor origin? Am J Surg Pathol. 2009;33(3):376–83.

    PubMed  Google Scholar 

  23. O’Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinomas: significantly higher expression of p53, MIB1, BCL2, HER-2/neu, and C-KIT in high-grade neoplasms. Am J Surg Pathol. 2005;29(8):1034–41.

    PubMed  Google Scholar 

  24. Takeshima Y, Amatya VJ, Kushitani K, Inai K. A useful antibody panel for differential diagnosis between peritoneal mesothelioma and ovarian serous carcinoma in Japanese cases. Am J Clin Pathol. 2008;130(5):771–9.

    CAS  PubMed  Google Scholar 

  25. Frierson Jr HF, Moskaluk CA, Powell SM, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34(6):605–9.

    CAS  PubMed  Google Scholar 

  26. Lin F, Shi J, Liu H, et al. Immunohistochemical detection of the von Hippel-Lindau gene product (pVHL) in human tissues and tumors: a useful marker for metastatic renal cell carcinoma and clear cell carcinoma of the ovary and uterus. Am J Clin Pathol. 2008;129(4):592–605.

    CAS  PubMed  Google Scholar 

  27. Lin F, Zhang PL, Yang XJ, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31(3):371–81.

    PubMed  Google Scholar 

  28. Tong GX, Chiriboga L, Hamele-Bena D, Borczuk AC. Expression of PAX2 in papillary serous carcinoma of the ovary: immunohistochemical evidence of fallopian tube or secondary Müllerian system origin? Mod Pathol. 2007;20(8):856–63.

    CAS  PubMed  Google Scholar 

  29. Ordonez NG. Role of immunohistochemistry in distinguishing epithelial peritoneal mesotheliomas from peritoneal and ovarian serous carcinomas. Am J Surg Pathol. 1998;22(10):1203–14.

    CAS  PubMed  Google Scholar 

  30. Laury AR, Hornick JL, Perets R, et al. PAX8 reliably distinguishes ovarian serous tumors from malignant mesothelioma. Am J Surg Pathol. 2010;34(5):627–35.

    PubMed  Google Scholar 

  31. Ordóñez NG. Value of PAX8, PAX2, claudin-4, and h-caldesmon immunostaining in distinguishing peritoneal epithelioid mesotheliomas from serous carcinomas. Mod Pathol. 2013;26(4):553–62.

    PubMed  Google Scholar 

  32. Miettinen M, Rikala MS, Rysz J, et al. Vascular endothelial growth factor receptor 2 (VEGFR2) as a marker for malignant vascular tumors and mesothelioma—immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol. 2012;36(4):629–39.

    PubMed Central  PubMed  Google Scholar 

  33. Maeda D, Ota S, Takazawa Y, et al. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod Pathol. 2009;22(6):824–32.

    CAS  PubMed  Google Scholar 

  34. Boman F, Buisine MP, Wacrenier A, et al. Mucin gene transcripts in benign and borderline mucinous tumours of the ovary: an in situ hybridization study. J Pathol. 2001;193(3):339–44.

    CAS  PubMed  Google Scholar 

  35. Tashiro Y, Yonezawa S, Kim YS, Sato E. Immunohistochemical study of mucin carbohydrates and core proteins in human ovarian tumors. Hum Pathol. 1994;25(4):364–72.

    CAS  PubMed  Google Scholar 

  36. Ho SB, Niehans GA, Lyftogt C, et al. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 1993;53(3):641–51.

    CAS  PubMed  Google Scholar 

  37. Vang R, Gown AM, Farinola M, et al. p16 expression in primary ovarian mucinous and endometrioid tumors and metastatic adenocarcinomas in the ovary: utility for identification of metastatic HPV-related endocervical adenocarcinomas. Am J Surg Pathol. 2007;31(5):653–63.

    PubMed  Google Scholar 

  38. Tabrizi AD, Kalloger SE, Kobel M, et al. Primary ovarian mucinous carcinoma of intestinal type: significance of pattern of invasion and immunohistochemical expression profile in a series of 31 cases. Int J Gynecol Pathol. 2010;29(2):99–107.

    PubMed  Google Scholar 

  39. Kappes S, Milde-Langosch K, Kressin P, et al. p53 mutations in ovarian tumors, detected by temperature-gradient gel electrophoresis, direct sequencing and immunohistochemistry. Int J Cancer. 1995;64(1):52–9.

    CAS  PubMed  Google Scholar 

  40. Esheba GE, Pate LL, Longacre TA. Oncofetal protein glypican-3 distinguishes yolk sac tumor from clear cell carcinoma of the ovary. Am J Surg Pathol. 2008;32(4):600–7.

    PubMed  Google Scholar 

  41. Cao D, Guo S, Allan RW, Molberg KH, Peng Y. SALL4 is a novel sensitive and specific marker of ovarian primitive germ cell tumors and is particularly useful in distinguishing yolk sac tumor from clear cell carcinoma. Am J Surg Pathol. 2009;33(6):894–904.

    PubMed  Google Scholar 

  42. Cameron RI, Ashe P, O’Rourke DM, Foster H, McCluggage WG. A panel of immunohistochemical stains assists in the distinction between ovarian and renal clear cell carcinoma. Int J Gynecol Pathol. 2003;22(3):272–6.

    CAS  PubMed  Google Scholar 

  43. Takano M, Tsuda H, Sugiyama T. Clear cell carcinoma of the ovary: is there a role of histology-specific treatment? J Exp Clin Cancer Res. 2012;31:53.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Kato N, Sasou S, Motoyama T. Expression of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors and endometriosis of the ovary. Mod Pathol. 2006;19:83–9.

    CAS  PubMed  Google Scholar 

  45. Köbel M, Kalloger SE, Carrick J, Huntsman D, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol. 2009;33(1):14–21.

    PubMed  Google Scholar 

  46. DeLair D, Oliva E, Köbel M, et al. Morphologic spectrum of immunohistochemically characterized clear cell carcinoma of the ovary: a study of 155 cases. Am J Surg Pathol. 2011;35:36–44.

    PubMed  Google Scholar 

  47. Kong CS, Beck AH, Longacre TA. A panel of 3 markers including p16, ProExC, or HPV ISH is optimal for distinguishing between primary endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2010;34(7):915–26.

    PubMed  Google Scholar 

  48. Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J Pathol. 2010;220(3):392–400.

    PubMed  Google Scholar 

  49. Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J Pathol. 2010;220:392–400.

    PubMed  Google Scholar 

  50. Mao TL, Shih IM. The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 2013;24(4):376–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of WT-1 in serous carcinomas in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol. 2005;29(8):1074–8.

    PubMed  Google Scholar 

  52. Hashi A, Yuminamochi T, Murata S, Iwamoto H, Honda T, Hoshi K. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol. 2003;22(4):374–7.

    PubMed  Google Scholar 

  53. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.

    CAS  PubMed  Google Scholar 

  54. Lin F, Shi J, Liu H, et al. Diagnostic utility of S100P and von Hippel-Lindau gene product (pVHL) in pancreatic adenocarcinoma-with implication of their roles in early tumorigenesis. Am J Surg Pathol. 2008;32(1):78–91.

    PubMed  Google Scholar 

  55. Reu S, Neumann J. Kirchner T.[Mucinous neoplasms of the vermiform appendix, Pseudomyxoma peritonei, and the new WHO classification]. Pathologe. 2012;33(1):24–30.

    CAS  PubMed  Google Scholar 

  56. Panarelli NC, Yantiss RK. Mucinous neoplasms of the appendix and peritoneum. Arch Pathol Lab Med. 2011;135(10):1261–8.

    PubMed  Google Scholar 

  57. Bellizzi AM, Rock J, Marsh WL, Frankel WL. Serrated lesions of the appendix: a morphologic and immunohistochemical appraisal. Am J Clin Pathol. 2010;133(4):623–32.

    PubMed  Google Scholar 

  58. Ferreira CR, Carvalho JP, Soares FA, et al. Mucinous ovarian tumors associated with pseudomyxoma peritonei of adenomucinosis type: immunohistochemical evidence that they are secondary tumors. Int J Gynecol Cancer. 2008;18(1):59–65.

    CAS  PubMed  Google Scholar 

  59. Chang MS, Byeon SJ, Yoon SO, et al. Leptin, MUC2 and mTOR in appendiceal mucinous neoplasms. Pathobiology. 2012;79(1):45–53.

    CAS  PubMed  Google Scholar 

  60. Park do Y, Srivastava A, Kim GH, et al. CDX2 expression in the intestinal-type gastric epithelial neoplasia: frequency and significance. Mod Pathol. 2010;23(1):54–61.

    PubMed  Google Scholar 

  61. Liu Q, Teh M, Ito K, Shah N, Ito Y, Yeoh KG. CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer. Mod Pathol. 2007;20(12):1286–97.

    CAS  PubMed  Google Scholar 

  62. Albarracin CT, Jafri J, Montag AG, Hart J, Kuan SF. Differential expression of MUC2 and MUC5AC mucin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol. 2000;31(6):672–7.

    CAS  PubMed  Google Scholar 

  63. O’Connell JT, Tomlinson JS, Roberts AA, McGonigle KF, Barsky SH. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am J Pathol. 2002;161(2):551–64.

    PubMed Central  PubMed  Google Scholar 

  64. Carico E, Fulciniti F, Giovagnoli MR, et al. Adhesion molecules and p16 expression in endocervical adenocarcinoma. Virchows Arch. 2009;455(3):245–51.

    CAS  PubMed  Google Scholar 

  65. Vang R, Gown AM, Barry TS, Wheeler DT, Ronnett BM. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: an analysis of 124 cases. Mod Pathol. 2006;19(1):97–105.

    CAS  PubMed  Google Scholar 

  66. Staebler A, Sherman ME, Zaino RJ, Ronnett BM. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol. 2002;26(8):998–1006.

    PubMed  Google Scholar 

  67. Lee ES, Leong AS, Kim YS, et al. Calretinin, CD34, and alpha-smooth muscle actin in the identification of peritoneal invasive implants of serous borderline tumors of the ovary. Mod Pathol. 2006;19(3):364–72.

    CAS  PubMed  Google Scholar 

  68. Comin CE, Saieva C, Messerini L. h-caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol. 2007;31(8):1139–48.

    PubMed  Google Scholar 

  69. Ordonez NG. Value of immunohistochemistry in distinguishing peritoneal mesothelioma from serous carcinoma of the ovary and peritoneum: a review and update. Adv Anat Pathol. 2006;13(1):16–25.

    CAS  PubMed  Google Scholar 

  70. Leroy X, Farine MO, Buob D, Wacrenier A, Copin MC. Diagnostic value of cytokeratin 7, CD10 and mesothelin in distinguishing ovarian clear cell carcinoma from metastasis of renal clear cell carcinoma. Histopathology. 2007;51(6):874–6.

    CAS  PubMed  Google Scholar 

  71. Cathro HP, Stoler MH. The utility of calretinin, inhibin, and WT1 immunohistochemical staining in the differential diagnosis of ovarian tumors. Hum Pathol. 2005;36(2):195–201.

    CAS  PubMed  Google Scholar 

  72. Veras E, Deavers MT, Silva EG, Malpica A. Ovarian nonsmall cell neuroendocrine carcinoma: a clinicopathologic and immunohistochemical study of 11 cases. Am J Surg Pathol. 2007;31(5):774–82.

    PubMed  Google Scholar 

  73. Zhao C, Bratthauer GL, Barner R, Vang R. Comparative analysis of alternative and traditional immunohistochemical markers for the distinction of ovarian sertoli cell tumor from endometrioid tumors and carcinoid tumor: a study of 160 cases. Am J Surg Pathol. 2007;31(2):255–66.

    PubMed  Google Scholar 

  74. Engohan-Aloghe C. Aubain Sommerhausen Nde S, Noel JC. Ovarian involvement by desmoplastic small round cell tumor with leydig cell hyperplasia showing an unusual immunophenotype (cytokeratin negative, calretinin and inhibin positive) mimicking poorly differentiated sertoli leydig cell tumor. Int J Gynecol Pathol. 2009;28(6):579–83.

    PubMed  Google Scholar 

  75. Carlson JW, Nucci MR, Brodsky J, Crum CP, Hirsch MS. Biomarker-assisted diagnosis of ovarian, cervical and pulmonary small cell carcinomas: the role of TTF-1, WT-1 and HPV analysis. Histopathology. 2007;51(3):305–12.

    CAS  PubMed  Google Scholar 

  76. Kommoss F, Oliva E, Bhan AK, Young RH, Scully RE. Inhibin expression in ovarian tumors and tumor-like lesions: an immunohistochemical study. Mod Pathol. 1998;11(7):656–64.

    CAS  PubMed  Google Scholar 

  77. Ordonez NG, Mackay B. Brenner tumor of the ovary: a comparative immunohistochemical and ultrastructural study with transitional cell carcinoma of the bladder. Ultrastruct Pathol. 2000;24(3):157–67.

    CAS  PubMed  Google Scholar 

  78. Logani S, Oliva E, Amin MB, Folpe AL, Cohen C, Young RH. Immunoprofile of ovarian tumors with putative transitional cell (urothelial) differentiation using novel urothelial markers: histogenetic and diagnostic implications. Am J Surg Pathol. 2003;27(11):1434–41.

    PubMed  Google Scholar 

  79. Al-Agha OM, Nicastri AD. An in-depth look at Krukenberg tumor: an overview. Arch Pathol Lab Med. 2006;130(11):1725–30.

    PubMed  Google Scholar 

  80. Hart WR. Diagnostic challenge of secondary (metastatic) ovarian tumors simulating primary endometrioid and mucinous neoplasms. Pathol Int. 2005;55(5):231–43.

    PubMed  Google Scholar 

  81. Hart WR. Mucinous tumors of the ovary: a review. Int J Gynecol Pathol. 2005;24(1):4–25.

    PubMed  Google Scholar 

  82. McCluggage WG, Wilkinson N. Metastatic neoplasms involving the ovary: a review with an emphasis on morphological and immunohistochemical features. Histopathology. 2005;47(3):231–47.

    CAS  PubMed  Google Scholar 

  83. Prat J. Ovarian carcinomas, including secondary tumors: diagnostically challenging areas. Mod Pathol. 2005;18 Suppl 2:S99–111.

    PubMed  Google Scholar 

  84. Hardisson D, Regojo RM, Marino-Enriquez A, Martinez-Garcia M. Signet-ring stromal tumor of the ovary: report of a case and review of the literature. Pathol Oncol Res. 2008;14(3):333–6.

    PubMed  Google Scholar 

  85. Irving JA, Young RH. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm. Am J Surg Pathol. 2009;33(3):367–75.

    PubMed  Google Scholar 

  86. Ohishi Y, Kaku T, Oya M, et al. CD56 expression in ovarian granulosa cell tumors, and its diagnostic utility and pitfalls. Gynecol Oncol. 2007;107(1):30–8.

    CAS  PubMed  Google Scholar 

  87. Nolan LP, Heatley MK. The value of immunocytochemistry in distinguishing between clear cell carcinoma of the kidney and ovary. Int J Gynecol Pathol. 2001;20(2):155–9.

    CAS  PubMed  Google Scholar 

  88. Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009;40(9):1213–23.

    CAS  PubMed  Google Scholar 

  89. Farinola MA, Gown AM, Judson K, et al. Estrogen receptor alpha and progesterone receptor expression in ovarian adult granulosa cell tumors and Sertoli-Leydig cell tumors. Int J Gynecol Pathol. 2007;26(4):375–82.

    PubMed  Google Scholar 

  90. McCluggage WG, Young RH. Ovarian sertoli-leydig cell tumors with pseudoendometrioid tubules (pseudoendometrioid sertoli-leydig cell tumors). Am J Surg Pathol. 2007;31(4):592–7.

    PubMed  Google Scholar 

  91. Riopel MA, Perlman EJ, Seidman JD, Kurman RJ, Sherman ME. Inhibin and epithelial membrane antigen immunohistochemistry assist in the diagnosis of sex cord-stromal tumors and provide clues to the histogenesis of hypercalcemic small cell carcinomas. Int J Gynecol Pathol. 1998;17(1):46–53.

    CAS  PubMed  Google Scholar 

  92. Busam KJ, Iversen K, Coplan KA, et al. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol. 1998;22(1):57–63.

    CAS  PubMed  Google Scholar 

  93. Baker PM, Oliva E, Young RH, Talerman A, Scully RE. Ovarian mucinous carcinoids including some with a carcinomatous component: a report of 17 cases. Am J Surg Pathol. 2001;25(5):557–68.

    CAS  PubMed  Google Scholar 

  94. Alenghat E, Okagaki T, Talerman A. Primary mucinous carcinoid tumor of the ovary. Cancer. 1986;58(3):777–83.

    CAS  PubMed  Google Scholar 

  95. Chu PG, Weiss LM. Immunohistochemical characterization of signet-ring cell carcinomas of the stomach, breast, and colon. Am J Clin Pathol. 2004;121(6):884–92.

    PubMed  Google Scholar 

  96. Vang R, Bague S, Tavassoli FA, Prat J. Signet-ring stromal tumor of the ovary: clinicopathologic analysis and comparison with Krukenberg tumor. Int J Gynecol Pathol. 2004;23(1):45–51.

    PubMed  Google Scholar 

  97. Shaco-Levy R, Kachko L, Mazor M, Piura B. Ovarian signet-ring stromal tumor: a potential diagnostic pitfall. Int J Surg Pathol. 2008;16(2):180–4.

    PubMed  Google Scholar 

  98. Irving JA, McCluggage WG. Ovarian spindle cell lesions: a review with emphasis on recent developments and differential diagnosis. Adv Anat Pathol. 2007;14(5):305–19.

    PubMed  Google Scholar 

  99. He Y, Yang KX, Jiang W, Wang DQ, Li L. Sclerosing stromal tumor of the ovary in a 4-year-old girl with characteristics of an ovarian signet-ring stromal tumor. Pathol Res Pract. 2010;206(5):338–41.

    PubMed  Google Scholar 

  100. Matsumoto M, Hayashi Y, Ohtsuki Y, et al. Signet-ring stromal tumor of the ovary: an immunohistochemical and ultrastructural study with a review of the literature. Med Mol Morphol. 2008;41(3):165–70.

    CAS  PubMed  Google Scholar 

  101. McCluggage WG. Immunohistochemical and functional biomarkers of value in female genital tract lesions. Int J Gynecol Pathol. 2006;25(2):101–20.

    PubMed  Google Scholar 

  102. Shintaku M, Mise Y. Müllerian adenosarcoma with a neuroectodermal component associated with an endometriotic cyst of the ovary: a case report. Pathol Int. 2012;62(4):271–5.

    PubMed  Google Scholar 

  103. McCluggage WG. Mullerian adenosarcoma of the female genital tract. Adv Anat Pathol. 2010;17(2):122–9.

    PubMed  Google Scholar 

  104. Gallardo A, Prat J. Mullerian adenosarcoma: a clinicopathologic and immunohistochemical study of 55 cases challenging the existence of adenofibroma. Am J Surg Pathol. 2009;33(2):278–88.

    PubMed  Google Scholar 

  105. George EM, Herzog TJ, Neugut AI, Lu YS, et al. Carcinosarcoma of the ovary: natural history, patterns of treatment, and outcome. Gynecol Oncol. 2013;131(1):42–5.

    PubMed Central  PubMed  Google Scholar 

  106. Matsuura Y, Kitajima M, Hachisuga T, et al. Malignant mixed müllerian tumor with malignant neuroectodermal components (teratoid carcinosarcoma) of the ovary: report of a case with clinicopathologic findings. J Obstet Gynaecol Res. 2010;36(4):907–11.

    PubMed  Google Scholar 

  107. Zhao C, Vinh TN, McManus K, et al. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol. 2009;33(3):354–66.

    PubMed  Google Scholar 

  108. Sasano H, Kaga K, Sato S, Yajima A, Nagura H. Adrenal 4-binding protein in common epithelial and metastatic tumors of the ovary. Hum Pathol. 1996;27(6):595–8.

    CAS  PubMed  Google Scholar 

  109. Abd-Elaziz M, Moriya T, Akahira J, Nakamura Y, Suzuki T, Sasano H. Immunolocalization of nuclear transcription factors, DAX-1 and Ad4BP/SF-1, in human common epithelial ovarian tumors: correlations with StAR and steroidogenic enzymes in epithelial ovarian carcinoma. Int J Gynecol Pathol. 2005;24(2):153–63.

    PubMed  Google Scholar 

  110. Matias-Guiu X, Pons C, Prat J. Mullerian inhibiting substance, alpha-inhibin, and CD99 expression in sex cord-stromal tumors and endometrioid ovarian carcinomas resembling sex cord-stromal tumors. Hum Pathol. 1998;29(8):840–5.

    CAS  PubMed  Google Scholar 

  111. Kim MS, Hur SY, Yoo NJ, Lee SH. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and other human cancers. J Pathol. 2010;221(2):147–52.

    CAS  PubMed  Google Scholar 

  112. Oliva E, Alvarez T, Young RH. Sertoli cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol. 2005;29(2):143–56.

    PubMed  Google Scholar 

  113. Zhao C, Barner R, Vinh TN, McManus K, Dabbs D, Vang R. SF-1 is a diagnostically useful immunohistochemical marker and comparable to other sex cord-stromal tumor markers for the differential diagnosis of ovarian sertoli cell tumor. Int J Gynecol Pathol. 2008;27(4):507–14.

    CAS  PubMed  Google Scholar 

  114. Zhao C, Bratthauer GL, Barner R, Vang R. Diagnostic utility of WT1 immunostaining in ovarian sertoli cell tumor. Am J Surg Pathol. 2007;31(9):1378–86.

    PubMed  Google Scholar 

  115. Irving JA, Alkushi A, Young RH, Clement PB. Cellular fibromas of the ovary: a study of 75 cases including 40 mitotically active tumors emphasizing their distinction from fibrosarcoma. Am J Surg Pathol. 2006;30(8):929–38.

    PubMed  Google Scholar 

  116. Deavers MT, Malpica A, Liu J, Broaddus R, Silva EG. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16(6):584–90.

    PubMed  Google Scholar 

  117. Movahedi-Lankarani S, Kurman RJ. Calretinin, a more sensitive but less specific marker than alpha-inhibin for ovarian sex cord-stromal neoplasms: an immunohistochemical study of 215 cases. Am J Surg Pathol. 2002;26(11):1477–83.

    PubMed  Google Scholar 

  118. McCluggage WG, Singh N, Kommoss S, et al. Ovarian cellular fibromas lack FOXL2 mutations: a useful diagnostic adjunct in the distinction from diffuse adult granulosa cell tumor. Am J Surg Pathol. 2013;37(9):1450–5.

    PubMed  Google Scholar 

  119. Oliva E, Garcia-Miralles N, Vu Q, Young RH. CD10 expression in pure stromal and sex cord-stromal tumors of the ovary: an immunohistochemical analysis of 101 cases. Int J Gynecol Pathol. 2007;26(4):359–67.

    PubMed  Google Scholar 

  120. Kostopoulou E, Moulla A, Giakoustidis D, Leontsini M. Sclerosing stromal tumors of the ovary: a clinicopathologic, immunohistochemical and cytogenetic analysis of three cases. Eur J Gynaecol Oncol. 2004;25(2):257–60.

    CAS  PubMed  Google Scholar 

  121. Hardisson D, Regojo RM, Mariño-Enríquez A, Martínez-García M. Signet-ring stromal tumor of the ovary: report of a case and review of the literature. Pathol Oncol Res. 2008;14(3):333–6.

    PubMed  Google Scholar 

  122. Vang R, Bagué S, Tavassoli FA, Prat J. Signet-ring stromal tumor of the ovary: clinicopathologic analysis and comparison with Krukenberg tumor. Int J Gynecol Pathol. 2004;23(1):45–51.

    PubMed  Google Scholar 

  123. Maeda D, Shibahara J, Sakuma T, et al. β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. Am J Surg Pathol. 2011;35(10):1429–40.

    PubMed  Google Scholar 

  124. Irving J, Young RH. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm. Am J Surg Pathol. 2009;33(3):367–75.

    PubMed  Google Scholar 

  125. Rabban JT, Zaloudek CJ. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord–stromal tumours. Histopathology. 2013;62:71–88.

    PubMed  Google Scholar 

  126. Stewart CJ, Alexiadis M, Crook ML, Fuller PJ. An immunohistochemical and molecular analysis of problematic and unclassified ovarian sex cord-stromal tumors. Hum Pathol. 2013;44(12):2774–81.

    CAS  PubMed  Google Scholar 

  127. Al-Agha OM, Huwait HF, Chow C, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94.

    PubMed  Google Scholar 

  128. Seidman JD, Abbondanzo SL, Bratthauer GL. Lipid cell (steroid cell) tumor of the ovary: immunophenotype with analysis of potential pitfall due to endogenous biotin-like activity. Int J Gynecol Pathol. 1995;14(4):331–8.

    CAS  PubMed  Google Scholar 

  129. Costa MJ, DeRose PB, Roth LM, Brescia RJ, Zaloudek CJ, Cohen C. Immunohistochemical phenotype of ovarian granulosa cell tumors: absence of epithelial membrane antigen has diagnostic value. Hum Pathol. 1994;25(1):60–6.

    CAS  PubMed  Google Scholar 

  130. Young RH. Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod Pathol. 2005;18 Suppl 2:S81–98.

    PubMed  Google Scholar 

  131. McCluggage WG, Oliva E, Connolly LE, McBride HA, Young RH. An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol. 2004;23(4):330–6.

    CAS  PubMed  Google Scholar 

  132. McCluggage WG. Ovarian neoplasms composed of small round cells: a review. Adv Anat Pathol. 2004;11(6):288–96.

    PubMed  Google Scholar 

  133. Horny HP, Marx L, Krober S, Luttges J, Kaiserling E, Dietl J. Granulosa cell tumor of the ovary. Immunohistochemical evidence of low proliferative activity and virtual absence of mutation of the p53 tumor-suppressor gene. Gynecol Obstet Invest. 1999;47(2):133–8.

    CAS  PubMed  Google Scholar 

  134. Costa MJ, Walls J, Ames P, Roth LM. Transformation in recurrent ovarian granulosa cell tumors: Ki67 (MIB-1) and p53 immunohistochemistry demonstrates a possible molecular basis for the poor histopathologic prediction of clinical behavior. Hum Pathol. 1996;27(3):274–81.

    CAS  PubMed  Google Scholar 

  135. Kuwashima Y, Uehara T, Kishi K, Shiromizu K, Matsuzawa M, Takayama S. Immunohistochemical characterization of undifferentiated carcinomas of the ovary. J Cancer Res Clin Oncol. 1994;120(11):672–7.

    CAS  PubMed  Google Scholar 

  136. Eichhorn JH, Lawrence WD, Young RH, Scully RE. Ovarian neuroendocrine carcinomas of non-small-cell type associated with surface epithelial adenocarcinomas. A study of five cases and review of the literature. Int J Gynecol Pathol. 1996;15(4):303–14.

    CAS  PubMed  Google Scholar 

  137. Cheng L, Roth LM, Zhang S, et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 2011;117(10):2096–20103.

    CAS  PubMed  Google Scholar 

  138. Kao CS, Idrees MT, Young RH, Ulbright TM. Solid pattern yolk sac tumor: a morphologic and immunohistochemical study of 52 cases. Am J Surg Pathol. 2012;36:360–7.

    PubMed  Google Scholar 

  139. Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010;41:716–23.

    CAS  PubMed  Google Scholar 

  140. Koo HL, Choi J, Kim KR, Kim JH. Pure non-gestational choriocarcinoma of the ovary diagnosed by DNA polymorphism analysis. Pathol Int. 2006;56(10):613–6.

    PubMed  Google Scholar 

  141. Rabban JT, Lerwill MF, McCluggage WG, et al. Primary ovarian carcinoid tumors may express CDX-2: a potential pitfall in distinction from metastatic intestinal carcinoid tumors involving the ovary. Int J Gynecol Pathol. 2009;28(1):41–8.

    PubMed  Google Scholar 

  142. Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010; 41(5):716–23.

    CAS  PubMed  Google Scholar 

  143. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166(3):913–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Cools M, Stoop H, Kersemaekers AM, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab. 2006;91(6):2404–13.

    CAS  PubMed  Google Scholar 

  145. Niehans GA, Manivel JC, Copland GT, et al. Immunohistochemistry of germ cell and trophoblastic neoplasms. Cancer. 1988;62(6):1113–23.

    CAS  PubMed  Google Scholar 

  146. Ulbright TM. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod Pathol. 2005;18 Suppl 2:S61–79.

    PubMed  Google Scholar 

  147. Liu A, Cheng L, Du J, et al. Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors. Am J Surg Pathol. 2010;34(5):697–706.

    PubMed  Google Scholar 

  148. Damjanov I, Osborn M, Miettinen M. Keratin 7 is a marker for a subset of trophoblastic cells in human germ cell tumors. Arch Pathol Lab Med. 1990;114(1):81–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Prichard DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prichard, J., Kaspar, H.G. (2015). Ovary. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1578-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1578-1_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1577-4

  • Online ISBN: 978-1-4939-1578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics