Skip to main content

MicroRNA Function in Mast Cell Biology: Protocols to Characterize and Modulate MicroRNA Expression

  • Protocol
  • First Online:
Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

MicroRNAs (miRNAs) are small noncoding RNA molecules that can modulate mRNA levels through RNA-induced silencing complex (RISC)-mediated degradation. Recognition of target mRNAs occurs through imperfect base pairing between an miRNA and its target, meaning that each miRNA can target a number of different mRNAs to modulate gene expression. miRNAs have been proposed as novel therapeutic targets and many studies are aimed at characterizing miRNA expression patterns and functions within a range of cell types. To date, limited research has focused on the function of miRNAs specifically in mast cells; however, this is an emerging field. In this chapter, we will briefly overview miRNA synthesis and function and the current understanding of miRNAs in hematopoietic development and immune function, emphasizing studies related to mast cell biology. The chapter will conclude with fundamental techniques used in miRNA studies, including RNA isolation, real-time PCR and microarray approaches for quantification of miRNA expression levels, and antagomir design to interfere with miRNA function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1): 15–20

    Article  CAS  PubMed  Google Scholar 

  2. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860

    Article  CAS  PubMed  Google Scholar 

  3. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Denli AM et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  7. Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  CAS  PubMed  Google Scholar 

  8. Ketting RF et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  10. Weinmann L et al (2009) Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136(3):496–507

    Article  CAS  PubMed  Google Scholar 

  11. Hammond SM et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  CAS  PubMed  Google Scholar 

  12. Mallory AC et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23(16):3356–3364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu J (2008) Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 20(2):214–221

    Article  CAS  PubMed  Google Scholar 

  14. Lewis BP et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  15. Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027): 769–773

    Article  CAS  PubMed  Google Scholar 

  16. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5): 855–862

    Article  CAS  PubMed  Google Scholar 

  17. Pillai RS et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309(5740):1573–1576

    Article  CAS  PubMed  Google Scholar 

  18. Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13(12):1108–1114

    Article  CAS  PubMed  Google Scholar 

  19. Petersen CP et al (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542

    Article  CAS  PubMed  Google Scholar 

  20. Bagga S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563

    Article  CAS  PubMed  Google Scholar 

  21. Giraldez AJ et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  22. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu J et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Guo S et al (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107(32):14229–14234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gruber JJ et al (2009) Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 138(2):328–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gerrits A et al (2012) Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells. Blood 119(2):377–387

    Article  CAS  PubMed  Google Scholar 

  27. O’Connell RM et al (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci U S A 107(32): 14235–14240

    Article  PubMed Central  PubMed  Google Scholar 

  28. Georgantas RW 3rd et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104(8):2750–2755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Felli N et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102(50): 18081–18086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lu J et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14(6):843–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Johnnidis JB et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182): 1125–1129

    Article  CAS  PubMed  Google Scholar 

  32. Cobb BS et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201(9): 1367–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li QJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161

    Article  CAS  PubMed  Google Scholar 

  34. Koralov SB et al (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132(5):860–874

    Article  CAS  PubMed  Google Scholar 

  35. O'Carroll D et al (2007) A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 21(16): 1999–2004

    Article  PubMed Central  PubMed  Google Scholar 

  36. Xiao C et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159

    Article  CAS  PubMed  Google Scholar 

  37. Zhou B et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104(17): 7080–7085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rao DS et al (2010) MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 33(1):48–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fontana L et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9(7):775–787

    Article  CAS  PubMed  Google Scholar 

  40. Fukao T et al (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129(3):617–631

    Article  CAS  PubMed  Google Scholar 

  41. Fazi F et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831

    Article  CAS  PubMed  Google Scholar 

  42. Costinean S et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103(18): 7024–7029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. O'Connell RM et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205(3):585–594

    Article  PubMed Central  PubMed  Google Scholar 

  44. Han YC et al (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207(3): 475–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Calin GA et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24): 15524–15529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Klein U et al (2010) The DLEU2/miR-15a/ 16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40

    Article  CAS  PubMed  Google Scholar 

  47. Chen XM et al (2007) A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 282(39):28929–28938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bazzoni F et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 106(13): 5282–5287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. O’Connell RM et al (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104(5): 1604–1609

    Article  PubMed Central  PubMed  Google Scholar 

  50. Liu G et al (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106(37): 15819–15824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sheedy FJ et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147

    Article  CAS  PubMed  Google Scholar 

  52. Taganov KD et al (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33): 12481–12486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Thai TH et al (2007) Regulation of the germinal center response by microRNA-155. Science 316(5824):604–608

    Article  CAS  PubMed  Google Scholar 

  55. Du C et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  CAS  PubMed  Google Scholar 

  56. Mattes J et al (2009) Antagonism of micro RNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106(44):18704–18709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002

    Article  CAS  PubMed  Google Scholar 

  58. Liu G et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Monticelli S et al (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6(8):R71

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kuchen S et al (2010) Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32(6):828–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mayoral RJ et al (2009) MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 182(1):433–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lee YN et al (2011) KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 117(13):3629–3640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ishizaki T et al (2011) miR126 positively regulates mast cell proliferation and cytokine production through suppressing Spred1. Genes Cells 16(7):803–814

    Article  CAS  PubMed  Google Scholar 

  64. Mayoral RJ et al (2011) MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS One 6(10):e26133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Molnar V et al (2012) MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells. Cell Mol Life Sci 69(5):793–808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven Maltby or Paul S. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maltby, S., Plank, M., Ptaschinski, C., Mattes, J., Foster, P.S. (2015). MicroRNA Function in Mast Cell Biology: Protocols to Characterize and Modulate MicroRNA Expression. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics