Skip to main content

Evolution of the Human Brain: From Matter to Mind

  • Chapter
  • First Online:
Handbook of Intelligence

Abstract

Design principles and operational modes are explored that underlie the information processing capacity of the human brain. The hypothesis is put forward that in higher organisms, especially in primates, the complexity of the neural circuitry of the cerebral cortex is the neural correlate of the brain’s coherence and predictive power, and, thus, a measure of intelligence. It will be argued that with the evolution of the human brain we have nearly reached the limits of biological intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz, F., Lopez, J., & Mortiel, J. (2003). Long distance communication in the human brain: Timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. Biological Research, 36, 89–99.

    PubMed  Google Scholar 

  • Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693–716.

    PubMed Central  PubMed  Google Scholar 

  • Allen, J. S. (2009). The lives of the brain: Human evolution and the organ of mind. Cambridge, MA: Belknap.

    Google Scholar 

  • Atkinson, A. P., Thomas, M. S. C., & Cleeremans, A. (2000). Consciousness: Mapping the theoretical landscape. Trends in Cognitive Sciences, 4, 372–382.

    PubMed  Google Scholar 

  • Ayala, F. J. (1986). Booknotes. Biology and Philosophy, 1, 249–262.

    Google Scholar 

  • Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. I., Leite, R. E. P., Filho, W. J., Lent, R., & Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. The Journal of Comparative Neurology, 513, 532–541.

    PubMed  Google Scholar 

  • Baars, B. J. (1997). In the theater of consciousness. New York: Oxford University Press.

    Google Scholar 

  • Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13, 336–349.

    PubMed  Google Scholar 

  • Buxhoeveden, D. P. (2012). Minicolumn size and human cortex. Progress in Brain Research, 195, 219–235.

    PubMed  Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002a). The minicolumn hypothesis in neuroscience. Brain, 125, 935–951.

    PubMed  Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002b). The minicolumn and the evolution of the brain. Brain, Behavior and Evolution, 60, 125–151.

    PubMed  Google Scholar 

  • Casanova, M. F., El-Baz, A., & Switala, A. (2011). Laws of conservation as related to brain growth, aging, and evolution: Symmetry of the minicolumn. Frontiers in Neuroanatomy, 5, 66. doi:10.3389/fnana.2011.00066.

    PubMed Central  PubMed  Google Scholar 

  • Changizi, M. A. (2001). Principles underlying mammalian neocortical scaling. Biological Cybernetics, 84, 207–215.

    PubMed  Google Scholar 

  • Changizi, M. A. (2007). Scaling the brain and its connections. In J. H. Kaas (Ed.), Evolution of nervous systems (Vol. 3, pp. 167–180). New York: Academic.

    Google Scholar 

  • Changizi, M. A., & Shimojo, S. (2005). Parcellation and area-area connectivity as a function of neocortex size. Brain, Behavior and Evolution, 66, 88–98.

    PubMed  Google Scholar 

  • Cherniak, C. (1995). Neural component placement. Trends in Neurosciences, 18, 522–527.

    PubMed  Google Scholar 

  • Cherniak, C. (2012). Neural wiring optimization. Progress in Brain Research, 195, 361–371.

    PubMed  Google Scholar 

  • Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron, 34, 341–347.

    PubMed  Google Scholar 

  • Chklovskii, D. B., Mel, B. W., & Svoboda, K. (2004). Cortical rewiring and information storage. Nature, 431, 782–788.

    PubMed  Google Scholar 

  • Churchland, P. S., & Churchland, P. M. (2002). Neural worlds and real worlds. Nature Reviews Neuroscience, 3, 903–907.

    PubMed  Google Scholar 

  • Clark, D. A., Mitra, P. P., & Wang, S. S.-H. (2001). Scalable architecture in mammalian brains. Nature, 411, 189–192.

    PubMed  Google Scholar 

  • Cochrane, P., Winter, C. S., Hardwick, A. (1995). Biological limits to information processing in the human brain. Retrieved from: http://www.cochrane.org.uk/opinion/archive/articles.phd

  • Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in Neuroscience, 2, 263–275.

    Google Scholar 

  • Crick, F., & Koch, C. (1995). Are we aware of neural activity in primary visual cortex? Nature, 375, 121–123.

    PubMed  Google Scholar 

  • Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.

    PubMed  Google Scholar 

  • Crick, F., & Koch, C. (2003). A framework of consciousness. Nature Neuroscience, 6, 119–126.

    PubMed  Google Scholar 

  • Da Costa, N. M., & Martin, K. A. C. (2010). Whose cortical column would that be? Frontiers in Neuroanatomy, 4, 16. doi:10.3389/fnana.2010.00016.

    PubMed Central  PubMed  Google Scholar 

  • De Sousa, A., & Cunha, E. (2012). Hominins and the emergence of the modern human brain. Progress in Brain Research, 195, 293–322.

    PubMed  Google Scholar 

  • Deacon, T. W. (1990). Rethinking mammalian brain evolution. American Zoologist, 30, 629–705.

    Google Scholar 

  • Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: Norton and Company.

    Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    PubMed  Google Scholar 

  • Edelman, G. M., & Tononi, G. A. (2000). A universe of consciousness. New York: Basic Books.

    Google Scholar 

  • Falk, D. (1990). Brain evolution in homo: The “radiator” theory. Behavioral and Brain Sciences, 13, 333–381.

    Google Scholar 

  • Falk, D. (2004). Braindance: New discoveries about human origins and brain evolution. Revised and expanded edition. Gainesville: University Press of Florida.

    Google Scholar 

  • Falk, D. (2007). Evolution of the primate brain. In W. Henke & I. Tattersall (Eds.), Handbook of palaeoanthropology (Vol. 2, pp. 1133–1162). New York: Springer.

    Google Scholar 

  • Falk, D. (2012). Hominin paleoneurology: Where are we now? Progress in Brain Research, 195, 253–270.

    Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    PubMed  Google Scholar 

  • Finlay, B. L., & Darlington, D. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    PubMed  Google Scholar 

  • Finlay, B. L., Darlington, D. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral Brain Sciences, 24, 263–278.

    PubMed  Google Scholar 

  • Frahm, H. D., Stephan, H., & Stephan, M. (1982). Comparison of brain structure volumes in insectivora and primates. Part I. Neocortex. Journal fĂĽr Hirnforschung, 23, 375–389.

    PubMed  Google Scholar 

  • Gould, S. J. (1976). Grades and clades revisited. In R. B. Masterton, W. Hodos, & H. J. Jerison (Eds.), Evolution, brain and behavior: Persistent problems (pp. 115–122). Hillsdale: Erlbaum.

    Google Scholar 

  • Greenfield, S. A. (1995). Journey to the centers of the mind. New York: Freeman.

    Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3, 31. doi:10.3389/neuro.09.031.2009.

    PubMed Central  PubMed  Google Scholar 

  • Herculano-Houzel, S. (2012). Neuronal scaling rules for primate brains: The primate advantage. Progress in Brain Research, 195, 325–340.

    PubMed  Google Scholar 

  • Herculano-Houzel, S., Collins, C.E., Wong, P., Kaas, J.H. & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 105, 12593–12598.

    Google Scholar 

  • Herculano-Houzel, S., Mota, B., Wong, P., & Kaas, J. H. (2010). Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 19008–19013.

    PubMed Central  PubMed  Google Scholar 

  • Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317, 1360–1366.

    PubMed  Google Scholar 

  • Hodos, W., & Campbell, C. B. G. (1990). Evolutionary scales and comparative studies of animal cognition. In R. P. Kesner & D. S. Olton (Eds.), Neurobiology of comparative cognition (pp. 1–20). Hillsdale: Erlbaum.

    Google Scholar 

  • Hofman, M. A. (1988). Size and shape of the cerebral cortex in mammals. Part II. The cortical volume. Brain, Behavior and Evolution, 32, 17–26.

    PubMed  Google Scholar 

  • Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137–158.

    PubMed  Google Scholar 

  • Hofman, M. A. (1996). Evolution of the human brain: Design without a designer. In N. Elsner & H.-U. Schnizler (Eds.), Brain and evolution (pp. 141–170). Stuttgart: Thieme Verlag.

    Google Scholar 

  • Hofman, M. A. (2001a). Evolution and complexity of the human brain: Some organizing principles. In G. Roth & M. F. Wullimann (Eds.), Brain evolution and cognition (pp. 501–521). New York: Wiley.

    Google Scholar 

  • Hofman, M. A. (2001b). Brain evolution in hominids: Are we at the end of the road. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 113–127). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hofman, M. A. (2003). Of brains and minds: A neurobiological treatise on the nature of intelligence. Evolution and Cognition, 9, 178–188.

    Google Scholar 

  • Hofman, M. A. (2007). Brain evolution and intelligence in primates. In S. Watanabe & M. A. Hofman (Eds.), Integration of comparative neuroanatomy and cognition (pp. 33–53). Tokyo: Keio University Press.

    Google Scholar 

  • Hofman, M. A. (2012). Design principles of the human brain: An evolutionary perspective. Progress in Brain Research, 195, 373–390.

    PubMed  Google Scholar 

  • Hofman, M. A., & Falk, D. (Eds.). (2012). Evolution of the brain in primates. From neuron to behavior. Amsterdam: Elsevier.

    Google Scholar 

  • Jerison, H. J. (1985). Animal intelligence as encephalization. Philosophical Transactions of the Royal Society London B, 308, 21–35.

    Google Scholar 

  • Kaas, J. H. (1993). Evolution of multiple areas and modules within neocortex. Perspectives in Developmental Neurobiology, 1, 101–107.

    Google Scholar 

  • Kaas, J. H. (2000). Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1, 7–23.

    Google Scholar 

  • Kaas, J. H. (2008). The evolution of the complex sensory and motor systems of the human brain. Brain Research Bulletin, 75, 384–390.

    PubMed Central  PubMed  Google Scholar 

  • Kaas, J. H. (2012). The evolution of neocortex in primates. Progress in Brain Research, 195, 91–102.

    PubMed Central  PubMed  Google Scholar 

  • Klein, R. G. (2009). The human career (3rd ed.). Chicago: Chicago University Press.

    Google Scholar 

  • Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and the positioning of cortical areas. Proceedings of the National Academy of Sciences of the United States of America, 100, 7937–7941.

    PubMed Central  PubMed  Google Scholar 

  • Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neurosciences, 18, 408–417.

    PubMed  Google Scholar 

  • Krubitzer, L. (2007). The magnificent compromise: Cortical field evolution in mammals. Neuron, 56, 201–208.

    PubMed  Google Scholar 

  • Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neural networks. Science, 301, 1870–1874.

    PubMed Central  PubMed  Google Scholar 

  • Lefebvre, L. (2012). Primate encephalization. Progress in Brain Research, 195, 393–412.

    PubMed  Google Scholar 

  • Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233–246.

    PubMed  Google Scholar 

  • Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H., & Pinto, A. V. O. (2012). How many neurons do you have? Some dogmas of quantitative neuroscience under revision. European Journal of Neuroscience, 35, 1–9.

    PubMed  Google Scholar 

  • Macphail, E. M. (1982). Brain and intelligence in vertebrates. Oxford: Clarendon.

    Google Scholar 

  • Macphail, E. M. (1993). The neuroscience of animal intelligence: From the seahare to the seahorse. New York: Columbia University Press.

    Google Scholar 

  • Macphail, E. M., & Bolhuis, J. J. (2001). The evolution of intelligence: Adaptive specializations versus general process. Biological Reviews, 76, 341–364.

    PubMed  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought. Diversity, evolution and inheritance. Cambridge, MA: Belknap.

    Google Scholar 

  • Mountcastle, V. B. (1997). The columnar organization of the brain. Brain, 120, 701–722.

    PubMed  Google Scholar 

  • Nieuwenhuys, R. (1994a). The neocortex: An overview of its evolutionary development, structural organization and synaptology. Anatomy and Embryology, 190, 307–337.

    PubMed  Google Scholar 

  • Nieuwenhuys, R. (1994b). The human brain: An introductory survey. Medica Mundi, 39, 64–79.

    Google Scholar 

  • Northcutt, R. G., & Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends in Neurosciences, 18, 373–379.

    PubMed  Google Scholar 

  • Panksepp, J., & Panksepp, J. B. (2000). The seven sins of evolutionary psychology. Evolution and Cognition, 6, 108–131.

    Google Scholar 

  • Panksepp, J., Moskal, J. R., Panksepp, J. B., & Kroes, R. A. (2002). Comparative approaches in evolutionary psychology: Molecular neuroscience meets the mind. Neuroendocrinology Letters, 23(Special issue, Suppl 4), 105–115.

    PubMed  Google Scholar 

  • Pirlot, P. (1987). Contemporary brain morphology in ecological and ethological perspectives. Journal fĂĽr Hirnforschung, 28, 145–211.

    PubMed  Google Scholar 

  • Popper, K. R. (1982). The place of mind in nature. In R. Q. Elvee (Ed.), Mind in nature (pp. 31–59). San Francisco: Harper and Row.

    Google Scholar 

  • Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. Proceedings of the National Academy of Sciences of the United States of America, 104, 13861–13867.

    PubMed Central  PubMed  Google Scholar 

  • Prothero, J. W., & Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals: A scaling model. Brain, Behavior and Evolution, 24, 152–167.

    PubMed  Google Scholar 

  • Raghanti, M. A., Spocter, M. A., Butti, C., Hof, P. R., & Sherwood, C. C. (2010). A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Frontiers in Neuronanatomy, 4, 3. doi:10.3389/neuro.05.003.2010.

    Google Scholar 

  • Rakic, P. (2007). The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Research Reviews, 55, 204–219.

    PubMed Central  PubMed  Google Scholar 

  • Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10, 724–735.

    PubMed Central  PubMed  Google Scholar 

  • Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society London B, 366, 1017–1027.

    Google Scholar 

  • Ringo, J. L. (1991). Neuronal interconnection as a function of brain size. Brain, Behavior and Evolution, 38, 1–6.

    PubMed  Google Scholar 

  • Ringo, J. L., Doty, R. W., Demeter, S., & Simard, P. Y. (1994). Time is of the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cerebral Cortex, 4, 331–343.

    PubMed  Google Scholar 

  • Robson, S. L., & Wood, B. (2008). Hominin life history: Reconstruction and evolution. Journal of Anatomy, 212, 394–425.

    PubMed Central  PubMed  Google Scholar 

  • Rockland, K. S. (2010). Five points on columns. Frontiers in Neuroanatomy, 4, 22. doi:10.3389/fnana.2010.00022.

    PubMed Central  PubMed  Google Scholar 

  • Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250–257.

    PubMed  Google Scholar 

  • Roth, G., & Dicke, U. (2012). Evolution of the brain and intelligence in primates. Progress in Brain Research, 195, 413–430.

    PubMed  Google Scholar 

  • Roth, G., & Wullimann, M. F. (Eds.). (2001). Brain evolution and cognition. New York: Wiley.

    Google Scholar 

  • Scannell, J. W., Blakemore, C. J., & Young, M. P. (1995). Analysis of connectivity in the cat cerebral cortex. The Journal of Neuroscience, 15, 1463–1483.

    PubMed  Google Scholar 

  • Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Reviews, 20, 236–260.

    Google Scholar 

  • Schoenemann, P. T. (2006). Evolution of the size and functional areas of the human brain. Annual Review of Anthropology, 35, 379–406.

    Google Scholar 

  • Schoenemann, P. T. (2012). Evolution of brain and intelligence. Progress in Brain Research, 195, 443–459.

    PubMed  Google Scholar 

  • Schoenemann, P. T., Sheehan, M. J., & Glotzer, I. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8, 242–252.

    PubMed  Google Scholar 

  • Semendeferi, K., Lu, A., Schenker, N., & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–276.

    PubMed  Google Scholar 

  • Semendeferi, K., Teffer, K., Buxhoeveden, D. P., Park, M. S., Bludau, S., Amunts, K., Travis, K., & Buckwalter, J. (2011). Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cerebral Cortex, 21, 1485–1497.

    PubMed  Google Scholar 

  • Shettleworth, S. J. (2012a). Fundamentals of comparative cognition. New York: Oxford University Press.

    Google Scholar 

  • Shettleworth, S. J. (2012b). Modularity, comparative cognition and human uniqueness. Philosophical Transactions of the Royal Society London B, 367, 2794–2801.

    Google Scholar 

  • Smaers, J. B., Schleicher, A., Zilles, K., & Vinicius, L. (2010). Frontal white matter volume in anthropoid primates. PLoS One, 5, e9123. doi:10.1371/journal.pone.0009123.

    PubMed Central  PubMed  Google Scholar 

  • Sporns, O., Chilavo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.

    PubMed  Google Scholar 

  • Sporns, O., Honey, C. J., & Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2, e1049. doi:10.1371/journal.pone.0001049.

    PubMed Central  PubMed  Google Scholar 

  • Striedter, G. F. (2004). Principles of brain evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Teffer, K., & Semendeferi, K. (2012). Human prefrontal cortex: Evolution, development, and pathology. Progress in Brain Research, 195, 191–218.

    PubMed  Google Scholar 

  • Van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31, 15775–15786.

    PubMed  Google Scholar 

  • Wang, S. S.-H., Shultz, J. R., Burish, M. J., Harrison, K. H., Hof, P. R., Towns, L. C., Wagers, M. W., & Wyatt, K. D. (2008). Functional trade-offs in white matter axonal scaling. The Journal of Neuroscience, 28, 4047–4056.

    PubMed Central  PubMed  Google Scholar 

  • Wedeen, V. J., Rosene, D. L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J. H., & Tseng, W. Y. (2012). The geometric structure of the brain fiber pathway. Science, 335, 1628–1638.

    PubMed Central  PubMed  Google Scholar 

  • Welker, W. (1990). Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 8B, pp. 23–136). New York: Plenum Press.

    Google Scholar 

  • Wen, Q., & Chklovskii, D. B. (2005). Segregation of the brain into gray and white matter: A design minimizing conduction delays. PLoS Computational Biology, 1, 617–630.

    Google Scholar 

  • Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London B, 252, 13–18.

    Google Scholar 

  • Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256, 1327–1331.

    PubMed  Google Scholar 

  • Zeman, A. Z. J. (2001). Consciousness. Brain, 124, 1263–1289.

    PubMed  Google Scholar 

  • Zhang, K., & Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 5621–5626.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel A. Hofman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofman, M.A. (2015). Evolution of the Human Brain: From Matter to Mind. In: Goldstein, S., Princiotta, D., Naglieri, J. (eds) Handbook of Intelligence. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1562-0_5

Download citation

Publish with us

Policies and ethics