Skip to main content

The Digital Thread for Personalized Craniomaxillofacial Surgery

  • Chapter
  • First Online:
Digital Technologies in Craniomaxillofacial Surgery

Abstract

Digital technologies are impacting reconstructive surgery like never before. The convergence of volumetric medical imaging, powerful software tools, and 3D printing is enabling personalized surgery. The craniomaxillofacial (CMF) specialty has always been an early adopter for volumetric medical imaging and 3D technologies, primarily driven by the need for functional and aesthetic outcomes, and dealing with the face, a very cosmetically and emotionally sensitive area. Reconstructive surgery of the CMF skeleton require precision, and this precision can be further refined by the use of digital technologies, both for the planning and the guidance of the procedure.

Virtually planning surgery in a computer environment using the patient’s medical imaging studies has completely transformed how 3D technologies can impact a case. A paradigm shift has happened whereby the digital plan for surgery can now be directly transferred to the patient using 3D printing guides, templates, and implants. This gives both more precision for the surgery and a road map for what was actually expected. Never before has such a tool existed to evaluate outcomes as compared to the plan and to learn both about technical factors like guide design and the surgeon’s skill level in carrying out the desired plan. There is now a report card which can be used to the betterment of surgical practice, and it’s powered by digital technology.

This chapter will explore the areas where 3D-enabled technologies have impacted CMF surgery as well as the current state of the art for virtually planned surgery with 3D printed guides, templates, and implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mankovich N, Cheeseman A, Soker N. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990;3:200.

    Article  CAS  PubMed  Google Scholar 

  2. Stoker N, Mankovich N, Valentino D. Stereolithographic models for surgical planning. J Oral Maxillofac Surg. 1992;50:466.

    Article  CAS  PubMed  Google Scholar 

  3. Erickson D, Chance D, Schmitt S, et al. An opinion survey of reported benefits from the use of stereolithographic models. J Oral and Maxillofac Surg. 1999;57:1040.

    Article  CAS  PubMed  Google Scholar 

  4. Eppley B. Craniofacial reconstruction with computer-generated HTR patient-matched implants: use in primary bony tumor excision. J Craniofac Surg. 2002;13(5):650–7.

    Article  PubMed  Google Scholar 

  5. Wolford L. Temporomandibular joint reconstruction of the complex patient with Techmedica custom-made total joint prosthesis. J Oral Maxillofac Surg. 1994;52(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  6. Binder W, Kaye A. Reconstruction of posttraumatic congenital facial deformities with three-dimensional computer-assisted custom-designed implants. Plast Reconstr Surg. 1994;94:775.

    Article  CAS  PubMed  Google Scholar 

  7. Eley K, McIntyre A, Watt-Smith S, Golding S. “black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;1011:272–8.

    Article  Google Scholar 

  8. Eley K, McIntyre A, Watt-Smith S, Golding S. “black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. Br J Radiol. 2012;1013:659.

    Google Scholar 

  9. Miracle A, Mukherj S. Conebeam CT of the head and neck, part 1: physical principles. Am J Neuroradiol. 2009;30(6):1088–95.

    Article  CAS  PubMed  Google Scholar 

  10. Schulze R, Heil U, Gross D, Bruellmann D, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma N, Aggarwal L. Automated medical image segmentation techniques. J Med Phys. 2010;35(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bryan F, Xu Z, Asman A, Allen W, Reich D, Landman B. Self-assessed performance improves statistical fusion of image labels. J Med Phys. 2014;41(3):031903.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Avraham T, Franco P, Brecht L, Ceradini D, Saadeh P, Hirsch D, Levine J. Functional outcomes of virtually planned free fibula flap reconstruction of the mandible. Plastic Reconstruct Surg. 2014;134:628e.

    Article  CAS  Google Scholar 

  14. Xia J, Sheychenko L, Gateno J, Teichgraeber J, Taylor T, Lasky R, English J, Kau C, Mcgrory K. Outcome of computer–aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J Oral Maxillofac Surg. 2011;69(7):2014–24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Markiewicz M, Bell R. The use of 3D imaging tools in facial plastic surgery. Facial Plast Surg Clin North Am. 2011;19:655–82.

    Article  PubMed  Google Scholar 

  16. Roser S, Ramachandra S, Blair H, Grist W, Carlson G, Christensen A, Weimer K, Steed M. The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results. J Oral Maxillofac Surg. 2010;68:2824–32.

    Article  PubMed  Google Scholar 

  17. Antony A, Chen W, Kolokythas A, Weimer K, Cohen M. Use of virtual surgery and stereolithography-guided osteotomy for mandibular reconstruction with the free fibula. Plast Reconstr Surg. 2011;128(5):1080–4.

    Article  CAS  PubMed  Google Scholar 

  18. Haddock N, Monaco C, Weimer K, Hirsch D, Levine J, Saddeh P. Increasing bony contact and overlap with computer-designed offset cuts in free fibula mandible reconstruction. J Craniofac Surg. 2012;23:1592–5.

    Article  PubMed  Google Scholar 

  19. Broe P, Tanna N, Franco P, Thanik V, Levine S, Garfein E, Saadeh P, Ceradini D, Hirsch D, Levine J. Ten-year evolution utilizing computer-assisted reconstruction for giant ameloblastoma. J Reconstr Microsurg. 2013;29:173–80.

    Article  Google Scholar 

  20. Doscher M, Garfein E, Bent J, Tepper O. Neonatal mandibular distraction osteogenesis: converting virtual surgical planning into an operative reality. Int J Pediatr Otorhinolaryngol. 2014;78:381–4.

    Article  PubMed  Google Scholar 

  21. Saad A, Winters R, Wise M, Dupin C, Hilaire HS. Virtual surgical planning in complex composite maxillofacial reconstruction. Plast Reconstr Surg. 2013;132(3):626–33.

    Article  CAS  PubMed  Google Scholar 

  22. Foley B, Thayer Q, Honeybrook A, McKenna S, Press S. Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg. 2013;71:e111–9.

    Article  PubMed  Google Scholar 

  23. Markiewicz M, Bell R. Modern concepts in computer-assisted craniomaxillofacial reconstruction. Curr Opin Otolaryngol Head Neck Surgery. 2011;19:295–301.

    Article  Google Scholar 

  24. Patel A, Levine J, Brecht L, Saadeh P, Hirsch D. Digital technologies in mandibular pathology and reconstruction. Atlas Oral Maxillofac Surg Clin North Am. 2012;131:95–106.

    Article  Google Scholar 

  25. Levine J, Soo Bae J, Soares M, Brecht L, Saadeh P, Cerandini D, Hirsch D. Jaw in a day: total maxillofacial reconstruction using digital technology. Plast Reconstr Surg. 2013;131:1383.

    Article  CAS  Google Scholar 

  26. Gelesko S, Markiewicz M, Weimer K, Bell R. Computer-aided orthognathic surgery. Atlas Oral Maxillofac Surg Clin North Am. 2012;20:107–18.

    Article  PubMed  Google Scholar 

  27. Mardini S, Alsubaie S, Cayci C, Chim H, Wetjen N. Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plas Reconst Asthetic Surg. 2014;67(3):336–43.

    Article  Google Scholar 

  28. Hsu S, Gateno J, Bell R, Hirsch D, Markiewicz M, Teichgraeber J, Xia J. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg. 2013;71:128–42.

    Article  PubMed  Google Scholar 

  29. Xia J, Phillips C, Gateno J, Teichgraeber J, Christensen A, Gliddon M, Lemoine J, Liebschner M. Cost-effectiveness analysis for computer-aided surgical simulation in complex cranio-maxillofacial surgery. J Oral Maxillofac Surg. 2006;64(12):1780–4.

    Article  PubMed  Google Scholar 

  30. Matros E, Albornoz C, Rensberger M, Weimer K, Garfein E. Computer-assisted design and computer-assisted modeling technique optimization and advantages over traditional methods of osseous flap reconstruction. J Reconstr Microsurg. 2013;29(3):173–80.

    Google Scholar 

  31. DeLong B, Weimer K, Press S. Development of an anthropometric skull for use in severe maxillofacial trauma reconstruction. In: AAOMS 94th Annual Meeting, San Diego, CA; 2012.

    Google Scholar 

  32. Lewallen J, Frederick J, Press S. Modifications of a halo-supported external fixator as an adjunct to complex maxillofacial trauma: a report of 10 cases. J Maxillofac Trauma. 2012;1:2–12.

    Google Scholar 

  33. Saber N, Phillips J, Looi T, Usmani Z, Burge J, Drake J, Kim P. Generation of normative pediatric skull models for use in cranial vault remodeling procedures. Childs Nerv Syst. 2012;28:405–10.

    Article  PubMed  Google Scholar 

  34. Burge J, Saber N, Looi T, French B, Usmani Z, Anooshiravani N, Kim P, Forrest C, Phillips J. Application of CAD/CAM prefabricated age-matched templates in cranio-orbital remodeling in craniosynostosis. J Craniofac Surg. 2011;22:1810–3.

    Article  PubMed  Google Scholar 

  35. Hirsch D, Garfein E, Christensen A, Weimer K, Saadeh P, Levine J. Use of computer-aided design and computer-aided manufacturing to produce orthognathically ideal surgical outcomes: a paradigm shift in head and neck reconstruction. J Oral Maxillofac Surg. 2009;67:2115–22.

    Article  PubMed  Google Scholar 

  36. Xia J, Gateno J, Teichgraeber J. A new paradigm for complex midface reconstruction: a reversed approach. J Oral Maxillofac Surg. 2009;67:693–703.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tepper O, Sorice S, Hershman G, Saadeh P, Levine J, Hirsch D. Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J Oral Maxillofac Surg. 2011;69:733–41.

    Article  PubMed  Google Scholar 

  38. Polley J, Figueroa A. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery. J Oral Maxillofac Surg. 2013;71:911–20.

    Article  PubMed  Google Scholar 

  39. Murphy S, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  Google Scholar 

  40. McCormick S, Drew S. Virtual model surgery for efficient planning and surgical performance. J Oral Maxillofac Surg. 2011;69:638–44.

    Article  PubMed  Google Scholar 

  41. Xia J, Gateno J, Teichgraeber J, Christensen A, Lasky R, Lemoine J, Liebschner M. Accuracy of a computer-aided surgical simulation (CASS) system in the treatment of complex cranio-maxillofacial deformities: a pilot study. J Oral Maxillofac Surg. 2007;65(2):248–54.

    Article  PubMed  Google Scholar 

  42. Xia J, McGrory J, Gateno J. A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J Oral Maxillofac Surg. 2011;69(3):584–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schatz E, Xia J, Gateno J. Development of a technique for recording and transferring natural head position in 3 dimensions. J Craniofac Surg. 2010;21(5):1452–5.

    Article  PubMed  Google Scholar 

  44. Gateno J, Xia J, Teichgraeber J, Rosen A. A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg. 2003;61:222–7.

    Article  PubMed  Google Scholar 

  45. Xia J, Gateno J, Teichgraeber J. A new clinical protocol to evaluate cranio-maxillofacial deformity and to plan surgical correction. J Oral Maxillofac Surg. 2009;67(10):2093.

    Google Scholar 

  46. Sharaf B, Levine J, Hirsch D, Bastidas J, Schiff B, Garfein E. Importance of computer-aided design and manufacturing technology in the multidisciplinary approach to head and neck reconstruction. J Craniofac Surg. 2010;21(4):1277–80.

    Article  PubMed  Google Scholar 

  47. Chim H, Wetjen N, Mardini S. Virtual surgical planning in craniofacial surgery. Semin Plast Surg. 2014;28:150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chandran R, Keeler G, Christensen A, Weimer K, Caloss R. Application of virtual surgical planning for total joint reconstruction with a stock alloplast system. J Oral Maxillofac Surg. 2011;69:286–94.

    Article  Google Scholar 

  49. Haq J, Patel N, Weimer K, Matthews S. Single stage treatment of ankylosis of the temporomandibular joint using patient-specific total joint replacement and virtual surgical planning. Br J Oral Maxillofac Surg. 2014;52:350–5.

    Article  PubMed  Google Scholar 

  50. Roberson D, Rosenberg W. Traumatic cranial defects reconstructed with the HTR-PMI cranioplatic implant. J Craniomaxillofac Trauma. 1997;3:8.

    PubMed  CAS  Google Scholar 

  51. Seruya M, Borsuk D, Khalifian S, Carson B, Dalesio N, Dorafshar A. Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg. 2013;24:1100–5.

    Article  PubMed  Google Scholar 

  52. Dorafshar A, Brazo P, Mundinger G, Mohan R, Brown E, Rodriguez E. Found in space: computer-assisted orthognathic alignment of a total face allograft in six degrees of freedom. J Oral Maxillofac Surg. 2014;72(9):1788–800.

    Article  PubMed  Google Scholar 

  53. Chim H, Amer H, Mardini S, Moran S. Vascularized composite allotransplantation in the realm of regenerative plastic surgery. Mayo Clin Proc. 2014;89(7):1009–20.

    Article  PubMed  Google Scholar 

  54. Hanasono M, Skoracki R. Computer-assisted design and rapid prototype modeling in microvascular mandible reconstruction. Laryngoscope. 2013;123:597–604.

    Article  PubMed  Google Scholar 

  55. Brown E, Dorafshar A, Bojovic B, et al. Total face, double jaw, and tongue transplant simulation: a cadaveric study using computer-assisted techniques. Plastic and Reconstructive Surgery. 2012;130(4):815–23.

    Article  CAS  PubMed  Google Scholar 

  56. Jacobs J, Dec W, Levine J, McCarthy J, Weimer KMK, Ceradini D. Best face forward: virtual modeling and custom device fabrication to optimize craniofacial vascularized composite allotransplantation. Plast Reconstr Surg. 2013;131:64.

    Article  CAS  PubMed  Google Scholar 

  57. Bell R. Computer planning and intraoperative navigation in cranio-maxillary surgery. Atlas Oral Maxillofac Surg Clin North Am. 2010;22:135–56.

    Article  Google Scholar 

  58. Hull C. Apparatus for production of three-dimensional objects by stereolithography. 3D Systems Corporation, assignee, Patent US4575330. 11 Mar 1986. Print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, A.M., Weimer, K., Beaudreau, C., Rensberger, M., Johnson, B. (2018). The Digital Thread for Personalized Craniomaxillofacial Surgery. In: Greenberg, A. (eds) Digital Technologies in Craniomaxillofacial Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1532-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1532-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1531-6

  • Online ISBN: 978-1-4939-1532-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics