Skip to main content

Applications of Polyethylene Oxide (POLYOX) in Hydrophilic Matrices

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Abstract

Polyethylene oxide (PEO), a hydrophilic water-soluble synthetic polymer, provides a useful alternative to HPMC for hydrophilic matrix applications. It is an effective matrix former, with high viscosity and swelling capacity, in addition to its good processing characteristics that aid tablet manufacture. The broad range of molecular weight grades available allows drug release to be tailored for different profiles across a wide range of drug dose and solubility combinations. Matrices can provide zero-order release profiles for soluble drugs. Long-term stability is aided by inclusion of an antioxidant and judicious choice of fillers at the formulation stage. Various formulation and processing studies are presented in this chapter using model formulation cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maximilien JS. Polyethylene oxide. In: Rowe R, Sheskey P, Quinn M, editors. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. p. 522–4.

    Google Scholar 

  2. Braun DB. Poly(ethylene oxide). In: Davidson RL, editor. Handbook of water soluble gums and resins. New York, NY: McGraw-Hill; 1980. p. 19.1–19.33.

    Google Scholar 

  3. Kjellander R, Florin E. Water structure and changes in thermal stability of the system poly(ethylene oxide)–water. J Chem Soc Faraday Trans 1. 1981;77:2053–77.

    Article  CAS  Google Scholar 

  4. Pang P, Englezos P. Kinetics of the aggregation of polyethylene oxide at temperatures above the polyethylene oxide–water cloud point temperature. Colloids Surf A Physicochem Eng Asp. 2002;204(1):23–30.

    Article  CAS  Google Scholar 

  5. Dow Chemical Company. POLYOX water soluble resins. Unique resins for binding, lubricity, adhesion and emollient performance. Technical data sheet. 2002.

    Google Scholar 

  6. Dow Chemical Company. POLYOX water-soluble resins NF in pharmaceutical applications. Brochure. 2002.

    Google Scholar 

  7. POLYOXâ„¢ Water Soluble resins combining flexibility with consistency. Overview. Dow Brochure. 2013.

    Google Scholar 

  8. Waterman KC, Adami RC, Alsante KM, et al. Stabilization of pharmaceuticals to oxidative degradation. Pharm Dev Technol. 2002;7(1):1–32.

    Article  PubMed  CAS  Google Scholar 

  9. Dow Chemical Company. Water soluble-resin storage stability. Technical data sheet. 2004.

    Google Scholar 

  10. L’Hote-Gaston J, Tocce E, Qiang L, et al. Improvements in oxidative stability of polyethylene oxide and the impact in oral solid dosage forms (poster). Controlled Release Society Annual Meeting. 2012.

    Google Scholar 

  11. Puz MJ, Johnson BA, Murphy BJ. Use of the antioxidant BHT in asymmetric membrane tablet coatings to stabilize the core to the acid catalyzed peroxide oxidation of a thioether drug. Pharm Dev Technol. 2005;10(1):115–25.

    Article  PubMed  CAS  Google Scholar 

  12. Thumma S, ElSohly MA, Zhang SQ, Gul W, Repka MA. Influence of plasticizers on the stability and release of a prodrug of Δ9-tetrahydrocannabinol incorporated in poly (ethylene oxide) matrices. Eur J Pharm Biopharm. 2008;70(2):605–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Colorcon, Inc. Antioxidant use in POLYOX ER matrices. Application data sheet. 2009.

    Google Scholar 

  14. L’Hote-Gaston J, Wallick D. Effect of filler type on the stability of Polyethylene Oxide in a hydrophilic matrix tablet (poster). Controlled Release Society Annual Meeting. 2008.

    Google Scholar 

  15. Colorcon, Inc. Physico-mechanical characterization of POLYOX for tablet manufacture. Application data sheet. 2009.

    Google Scholar 

  16. Kim CJ. Drug release from compressed hydrophilic POLYOX-WSR tablets. J Pharm Sci. 1995;84(3):303–6.

    Article  PubMed  CAS  Google Scholar 

  17. Colombo P, Bettini R, Santi P, Peppas N. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Tech Today. 2000;3(6):198–204.

    Article  CAS  Google Scholar 

  18. Körner A, Piculell L, Iselau F, Wittgren B, Larsson A. Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets. Molecules. 2009;14:2699–716.

    Article  PubMed  Google Scholar 

  19. Verhoeven E, De Beer TR, Schacht E, Van den Mooter G, Remon JP, Vervaet C. Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in-vitro and in-vivo evaluations. Eur J Pharm Biopharm. 2009;72(2):463–70.

    Article  PubMed  CAS  Google Scholar 

  20. Tiwari SB, DiNunzio J, Rajabi-Siahboomi A. Drug–polymer matrices for extended release. In: Wilson CG, Crowley PJ, editors. Controlled release in oral drug delivery. New York, NY: Springer; 2011. p. 131–60.

    Chapter  Google Scholar 

  21. Macrae R. Pharmaceutical formulations. WO/1997/018814. 1997.

    Google Scholar 

  22. Gusler G, Berner B, Chau M, Padua A. Optimal polymer mixtures for gastric retentive tablets. US Patent No. 2003/0104053 A1. 2001.

    Google Scholar 

  23. Glumetza Website visited: http://www.glumetzaxr.com/what-is-glumetza/. Date accessed: 1 Mar 2014.

  24. Li H, Hardy R, Gu X. Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets. AAPS PharmSciTech. 2008;9:2.

    Article  Google Scholar 

  25. Kim CJ. Effects of drug solubility, drug loading and polymer molecular weight on drug release from POLYOX tablets. Drug Dev Ind Pharm. 1998;24:645–51.

    Article  PubMed  CAS  Google Scholar 

  26. Mensitieri G. Polyoxyethylene (PEO)-based delivery systems: influence of polymer molecular weight and gel viscoelastic behavior on drug release mechanism. Polymer Preprint. 1992;33:88–9.

    CAS  Google Scholar 

  27. Palmer D, Levina M, Farrell T, Rajabi-Siahboomi A. The influence of polymer concentration on release of poorly soluble drugs from polyethylene oxide extended release matrices (poster). American Association of Pharmaceutical Scientists Annual Meeting. 2010.

    Google Scholar 

  28. Colorcon, Inc. Formulation of POLYOX ER matrices for a highly soluble active. Application data sheet. 2009.

    Google Scholar 

  29. Maggi L, Segale L, Torre ML, Ochoa Machiste E, Conte U. Dissolution behaviour of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Biomaterials. 2002;23(4):1113–9.

    Article  PubMed  CAS  Google Scholar 

  30. Rane M, Parmar J, Rajabi-Siahboomi A. Hydrophilic matrices for oral extended release: influence of fillers on drug release from HPMC matrices. Pharma Times. 2010;42(4):41–5.

    Google Scholar 

  31. Choi SU, Lee J, Choi YW. Development of a directly compressible poly(ethylene oxide) matrix for the sustained-release of dihydrocodeine bitartrate. Drug Dev Ind Pharm. 2003;29(10):1045–52.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer D, Levina M, Nokhodchi A, Farrell T, Rajabi-Siahboomi A. The influence of film coating and storage on propranolol hydrochloride release from polyethylene oxide extended release matrices (poster). Controlled Release Society Annual Meeting. 2011.

    Google Scholar 

  33. Vilotte F, Venczel C, Vesey C. Immediate release film coating of an acetaminophen extended release matrix tablet containing a high concentration of polyethylene oxide water soluble resin (poster). American Association of Pharmaceutical Scientists Annual Meeting. 2013.

    Google Scholar 

  34. Vidyadhara S, Sasidhar RLC, Nagaraju R. Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride. Indian J Pharm Sci. 2013;75(2):185–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Dhawan S, Varma M, Sinha VR. High molecular weight poly(ethylene oxide)-based drug delivery systems: Part I: Hydrogels and hydrophilic matrix systems. Pharm Technol. 2005;29:72.

    CAS  Google Scholar 

  36. Dow Chemical Company. Water granulation with POLYOX WSR. Technical data sheet. 2003.

    Google Scholar 

  37. Patel P, Missaghi S, Farrell T, Rajabi-Siahboomi A. Effect of granulation processing parameters on performance of push-pull osmotic pump tablets of a practically water insoluble model drug (poster). Controlled Release Society Annual Meeting. 2012.

    Google Scholar 

  38. Teng Y, Qiu Z, Wen H. Systematical approach of formulation and process development using roller compaction. Eur J Pharm Biopharm. 2009;73:219–29.

    Article  PubMed  CAS  Google Scholar 

  39. Schmitt R, Chien C, Shrestha U. Polyethylene oxide matrix tablets prepared by roller compaction (poster). American Association of Pharmaceutical Scientists Annual Meeting. 2004.

    Google Scholar 

  40. Channer KS, Virjee JP. The effect of surface coating of tablets on oesophageal transit. Br J Pharm Pract. 1985;4:9–14.

    Google Scholar 

  41. Colorcon, Inc. Dissolution testing for POLYOX extended release matrices. Application data sheet. 2009.

    Google Scholar 

  42. Deng H, Vass S, Tiwari S, Farrell T, Rajabi-Siahboomi A. The effect of film coating on the stability of extended release metformin hydrochloride POLYOX matrices (poster). American Association of Pharmaceutical Scientists Annual Meeting. 2011.

    Google Scholar 

  43. Levina M, Palmer D, Rajabi-Siahboomi A. Evaluation of in-vitro dissolution methods for the assessment of drug release from hydrophilic extended-release matrices based on polyethylene oxide. Drug Deliv Technol. 2010;10(5):18–23.

    CAS  Google Scholar 

  44. Palmer D, Levina M, Farrell T, Rajabi-Siahboomi A. The influence of hydro-alcoholic media on drug release from polyethylene oxide extended-release matrix tablets. Pharm Technol. 2011;35(7):50–8.

    CAS  Google Scholar 

  45. Bartholomaeus JH, Arkenau-Marić E, Galia E. Opioid extended-release tablets with improved tamper-resistant properties. Expert Opin Drug Deliv. 2012;9(8):879–91.

    Article  PubMed  CAS  Google Scholar 

  46. U.S. Food and Drug Administration Inactive Ingredient Database. June 2010.

    Google Scholar 

  47. Monograph. Polythylene oxide. United States Pharmacopeia and National Formulary (USP 37-NF32).

    Google Scholar 

  48. European Agency for Evaluation of Medicinal Products. Note for guidance on limitations to the use of ethylene oxide in the manufacture of medicinal products. 2001. Website visited: http://www.tga.gov.au/pdf/euguide/qwp015901en.pdf. Date accessed: 1 Mar 2014.

  49. Dow Chemical Company. Dust explosibility of POLYOX water-soluble resins. Technical data sheet. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Rajabi-Siahboomi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Martin, L.M., Rajabi-Siahboomi, A.R. (2014). Applications of Polyethylene Oxide (POLYOX) in Hydrophilic Matrices. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_5

Download citation

Publish with us

Policies and ethics