Skip to main content

Natural Polysaccharides in Hydrophilic Matrices

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 16))

Abstract

Natural polysaccharides and their modified derivatives can provide useful alternatives to the use of cellulose ethers in hydrophilic matrix tablets. They are chemically diverse and originate from a broad range of plant and microbial sources. They are widely available for use in foods, and modified starches and xanthan gum in particular have been studied as matrix carriers. Many have additional properties which can be used to advantage in extended-release applications. Their ability to form regular molecular structures and to interact with drugs and other polymers can be particularly useful. They have found application not only in conventional extended-release matrices but also in specialised matrices for targeting different regions of the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christenson GL, Dale L. Sustained release tablet. US Patent US3065143. USA: Richardson-Merrell; 1962.

    Google Scholar 

  2. Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym. 2013;92(2):1685–99.

    PubMed  CAS  Google Scholar 

  3. Melia CD. Hydrophilic matrix sustained-release systems based on polysaccharide carriers. Crit Rev Ther Drug Carrier Syst. 1991;8(4):395–421.

    PubMed  CAS  Google Scholar 

  4. Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ. Modified gums: Approaches and applications in drug delivery. Carbohydr Polym. 2011;83(3):1031–47.

    CAS  Google Scholar 

  5. Bhardwaj T, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm. 2000;26(10):1025–38.

    PubMed  CAS  Google Scholar 

  6. Tiwari SB, Rajabi-Siahboomi AR. Applications of complementary polymers in HPMC hydrophilic extended release matrices. Drug Deliv Techol. 2009;9(7):20–7.

    CAS  Google Scholar 

  7. Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll. 2007;21(1):1–22.

    CAS  Google Scholar 

  8. Herman J, Remon JP. Modified starches as hydrophilic matrices for controlled oral delivery. 2. In vitro drug release evaluation of thermally modified starches. Int J Pharm. 1989;56(1):65–70.

    CAS  Google Scholar 

  9. Nakano M, Nakazono N, Inotsume N. Preparation and evaluation of sustained-release tablets prepared with alpha-starch. Chem Pharm Bull. 1987;35(10):4346–50.

    PubMed  CAS  Google Scholar 

  10. Van Aerde P, Remon JP. In-vitro evaluation of modified starches as matrices for sustained release dosage forms. Int J Pharm. 1988;45(1–2):145–52.

    Google Scholar 

  11. Herman J, Remon JP, Devilder J. Modified starches as hydrophilic matrices for controlled oral delivery. 1. Production and characterization of thermally modified starches. Int J Pharm. 1989;56(1):51–63.

    CAS  Google Scholar 

  12. Herman J, Remon JP. Modified starches as hydrophilic matrices for controlled oral delivery. 3. Evaluation of sustained-release theophylline formulations based on thermal modified starch matrices in dogs. Int J Pharm. 1990;63(3):201–5.

    CAS  Google Scholar 

  13. Vandenbossche GMR, Lefebvre RA, Dewilde GA, Remon JP. Performance of a modified starch hydrophilic matrix for the sustained-release of theophylline in healthy-volunteers. J Pharm Sci. 1992;81(3):245–8.

    PubMed  CAS  Google Scholar 

  14. Alebiowu G, Itiola OA. Compressional characteristics of native and pregelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of their tablets. Drug Dev Ind Pharm. 2002;28(6):663–72.

    PubMed  CAS  Google Scholar 

  15. Odeku OA, Schmid W, Picker-Freyer KM. Material and tablet properties of pregelatinized (thermally modified) Dioscorea starches. Eur J Pharm Biopharm. 2008;70(1):357–71.

    PubMed  CAS  Google Scholar 

  16. Lenaerts V, Dumoulin Y, Mateescu MA. Controlled release of theophylline from cross-linked amylose tablets. J Control Release. 1991;15(1):39–46.

    CAS  Google Scholar 

  17. Onofre FO, Mendez-Montealvo G, Wang YJ. Sustained release properties of cross-linked corn starches with varying amylose contents in monolithic tablets. Starch-Starke. 2010;62(3–4):165–72.

    CAS  Google Scholar 

  18. Dumoulin Y, Alex S, Szabo P, Cartilier L, Mateescu MA. Cross-linked amylose as matrix for drug controlled release. X-ray and FT-IR structural analysis. Carbohydr Polym. 1998;37(4):361–70.

    CAS  Google Scholar 

  19. Moussa IS, Cartilier LH. Characterization of moving fronts in cross-linked amylose matrices by image analysis. J Control Release. 1996;42(1):47–55.

    CAS  Google Scholar 

  20. Ravenelle F, Marchessault RH, Legare A, Buschmann MD. Mechanical properties and structure of swollen crosslinked high amylose starch tablets. Carbohydr Polym. 2002;47(3):259–66.

    CAS  Google Scholar 

  21. Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P, Mateescu MA, Cartilier L, Marchessault R. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53(1–3):225–34.

    PubMed  CAS  Google Scholar 

  22. Moussa IS, Lenaerts V, Cartilier LH. Effect of some physical parameters on the swelling properties of cross-linked amylose matrices. Int J Pharm. 1998;173(1–2):35–41.

    CAS  Google Scholar 

  23. Moussa IS, Cartilier LH. Evaluation of cross-linked amylose press-coated tablets for sustained drug delivery. Int J Pharm. 1997;149(2):139–49.

    CAS  Google Scholar 

  24. Chebli C, Cartilier L, Hartman NG. Substituted amylose as a matrix for sustained-drug release: a biodegradation study. Int J Pharm. 2001;222(2):183–9.

    PubMed  CAS  Google Scholar 

  25. Ravenelle F, Rahmouni M. Contramid (R): high-amylose starch for controlled drug delivery. In: Marchessault RH, Ravenelle F, Zhu XX, editors. Polysaccharides for drug delivery and pharmaceutical applications. Washington: American Chemical Society; 2006. p. 79–104.

    Google Scholar 

  26. Rahmouni M, Chouinard F, Nekka F, Lenaerts V, Leroux JC. Enzymatic degradation of cross-linked high amylose starch tablets and its effect on in vitro release of sodium diclofenac. Eur J Pharm Biopharm. 2001;51(3):191–8.

    PubMed  CAS  Google Scholar 

  27. Lenaerts V, Ouadji-Njiki PL, Bacon J, Ouzerourou R, Gervais S, Rahmouni M, Smith D. Sustained release tramadol formulations with 24 efficacy. US Patent US7988998. 2011.

    Google Scholar 

  28. Mulhbacher J, Ispas-Szabo P, Lenaerts V, Mateescu MA. Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings. J Control Release. 2001;76(1–2):51–8.

    PubMed  CAS  Google Scholar 

  29. Onofre FO, Wang YJ. Hydroxypropylated starches of varying amylose contents as sustained release matrices in tablets. Int J Pharm. 2010;385(1–2):104–12.

    PubMed  CAS  Google Scholar 

  30. Mulhbacher J, Ispas-Szabo P, Ouellet M, Alex S, Mateescu MA. Mucoadhesive properties of cross-linked high amylose starch derivatives. Int J Biol Macromol. 2006;40(1):9–14.

    PubMed  CAS  Google Scholar 

  31. Pohja S, Suihko E, Vidgren M, Paronen P, Ketolainen J. Starch acetate as a tablet matrix for sustained drug release. J Control Release. 2004;94(2–3):293–302.

    PubMed  CAS  Google Scholar 

  32. Pajander J, Korhonen O, Laamanen M, Ryynanen EL, Grimsey I, Van Veen B, Ketolainen J. Effect of formulation parameters and drug-polymer interactions on drug release from starch acetate matrix tablets. J Pharm Sci. 2009;98(10):3676–90.

    PubMed  CAS  Google Scholar 

  33. O’Brien S, Wang YJ, Vervaet C, Remon JP. Starch phosphates prepared by reactive extrusion as a sustained release agent. Carbohydr Polym. 2009;76(4):557–66.

    Google Scholar 

  34. Chebli C, Moussa I, Buczkowski S, Cartilier L. Substituted amylose as a matrix for sustained drug release. Pharm Res. 1999;16(9):1436–40.

    PubMed  CAS  Google Scholar 

  35. Onofre FO, Wang YJ. Sustained release properties of crosslinked and substituted starches. J Appl Polym Sci. 2010;117(3):1558–65.

    CAS  Google Scholar 

  36. Mateescu MA, Ispas-Szabo P, Mulhbacher J. Cross-linked starch derivatives for highly loaded pharmaceutical formulations. In: Marchessault RH, Ravanelle F, Zhu X, editors. Polysaccharides for drug delivery and pharmaceutical applications. Washington: ACS Symposium Series 934;2006. p. 121–37.

    Google Scholar 

  37. Cartilier L, Ungur M, Chebli C. Tablet formulation for sustained drug release. US Patent US20090011014 A1. 2009.

    Google Scholar 

  38. Brouillet F, Bataille B, Cartilier L. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: Formulation aspects and in vitro drug-release evaluation. Int J Pharm. 2008;356(1–2):52–60.

    PubMed  CAS  Google Scholar 

  39. Nabais T, Brouillet F, Kyriacos S, Mroueh M, da Silva PA, Bataille B, Chebli C, Cartilier L. High-amylose carboxymethyl starch matrices for oral sustained drug-release: In vitro and in vivo evaluation. Eur J Pharm Biopharm. 2007;65(3):371–8.

    PubMed  CAS  Google Scholar 

  40. Lemieux M, Gosselin P, Mateescu MA. Carboxymethyl high amylose starch as excipient for controlled drug release: Mechanistic study and the influence of degree of substitution. Int J Pharm. 2009;382(1–2):172–82.

    PubMed  CAS  Google Scholar 

  41. Calinescu C, Mulhbacher J, Nadeau T, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur J Pharm Biopharm. 2005;60(1):53–60.

    PubMed  CAS  Google Scholar 

  42. De Koninck P, Archambault D, Hamel F, Sarhan F, Mateescu MA. Carboxymethyl-starch excipients for gastrointestinal stable oral protein formulations containing protease inhibitors. J Pharm Pharm Sci. 2010;13(1):78–92.

    PubMed  Google Scholar 

  43. Calinescu C, Nadeau E, Mulhbacher J, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch for F4 fimbriae gastro-resistant oral formulation. Int J Pharm. 2007;343(1–2):18–25.

    PubMed  CAS  Google Scholar 

  44. Delisle B, Calinescu C, Mateescu MA, Fairbrother JM, Nadeau E. Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs. J Pharm Pharm Sci. 2012;15(5):642–56.

    PubMed  CAS  Google Scholar 

  45. Massicotte LP, Baille WE, Mateescu MA. Carboxylated high amylose starch as pharmaceutical excipients—Structural insights and formulation of pancreatic enzymes. Int J Pharm. 2008;356(1–2):212–23.

    PubMed  CAS  Google Scholar 

  46. Assaad E, Wang YJ, Zhu XX, Mateescu MA. Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr Polym. 2011;84(4):1399–407.

    CAS  Google Scholar 

  47. Calinescu C, Mateescu MA. Carboxymethyl high amylose starch: Chitosan self-stabilized matrix for probiotic colon delivery. Eur J Pharm Biopharm. 2008;70(2):582–9.

    PubMed  CAS  Google Scholar 

  48. Calinescu C, Mondovi B, Federico R, Ispas-Szabo P, Mateescu MA. Carboxymethyl starch: Chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery. Int J Pharm. 2012;428(1–2):48–56.

    PubMed  CAS  Google Scholar 

  49. Friciu MM, Le TC, Ispas-Szabo P, Mateescu MA. Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic Mesalamine forms for colon delivery. Eur J Pharm Biopharm. 2013;85(3):521–30.

    Google Scholar 

  50. Wierik G, Bergsma J, ArendsScholte AW, Boersma T, Eissens AC, Lerk CF. A new generation of starch products as excipient in pharmaceutical tablets. 1. Preparation and binding properties of high surface area potato starch products. Int J Pharm. 1996;134(1–2):27–36.

    Google Scholar 

  51. TeWierik GHP, Eissens AC, Bergsma J, ArendsScholte AW, Bolhuis GK. A new generation starch product as excipient in pharmaceutical tablets. 3. Parameters affecting controlled drug release from tablets based on high surface area retrograded pregelatinized potato starch. Int J Pharm. 1997;157(2):181–7.

    CAS  Google Scholar 

  52. TeWierik GHP, Ramaker J, Eissens AC, Bergsma J, ArendsScholte W, Lerk CF. High surface area starch products as filler-binder in direct compression tablets. Pharmazie. 1996;51(5):311–5.

    CAS  Google Scholar 

  53. Vanderveen J, Eissens AC, Lerk CF. Controlled-release of paracetamol from amylodextrin tablets—In-vitro and in-vivo results. Pharm Res. 1994;11(3):384–7.

    CAS  Google Scholar 

  54. Steendam R, Eissens ACE, Frijlink HW, Lerk CF. Plasticisation of amylodextrin by moisture—Consequences for drug release from tablets. Int J Pharm. 2000;204(1–2):23–33.

    PubMed  CAS  Google Scholar 

  55. Liu GD, Hong Y, Gu ZB. Evaluation of amorphous debranched starch as extended-release matrices in tablets. Carbohydr Polym. 2013;98(1):995–1001.

    PubMed  CAS  Google Scholar 

  56. Yoon HS, Kweon DK, Lim ST. Effects of drying process for amorphous waxy maize starch on theophylline release from starch-based tablets. J Appl Polym Sci. 2007;105(4):1908–13.

    CAS  Google Scholar 

  57. Sanchez L, Torrado S, Lastres JL. Gelatinized freeze-dried starch as excipient in sustained-release tablets. Int J Pharm. 1995;115(2):201–8.

    CAS  Google Scholar 

  58. Yoon HS, Lee JH, Lim ST. Utilization of retrograded waxy maize starch gels as tablet matrix for controlled release of theophylline. Carbohydr Polym. 2009;76(3):449–53.

    CAS  Google Scholar 

  59. Homayouni A, Amini A, Keshtiban AK, Mortazavian AM, Esazadeh K, Pourmoradian S. Resistant starch in food industry: A changing outlook for consumer and producer. Starch-Starke. 2014;66(1–2):102–14.

    CAS  Google Scholar 

  60. Kipping T, Rein H. A new method for the continuous production of single dosed controlled release matrix systems based on hot-melt extruded starch: Analysis of relevant process parameters and implementation of an in-process control. Eur J Pharm Biopharm. 2013;84(1):156–71.

    PubMed  CAS  Google Scholar 

  61. Dumoulin Y, Cartilier LH, Mateescu MA. Cross-linked amylose tablets containing alpha-amylase: An enzymatically-controlled drug release system. J Control Release. 1999;60(2–3):161–7.

    PubMed  CAS  Google Scholar 

  62. Yoon HS, Lim ST. Utilization of enzyme-resistant starch to control theophylline release from tablets. Starch-Starke. 2009;61(3–4):154–60.

    CAS  Google Scholar 

  63. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ, Naikwadi NN, Variya BC. Galactomannan: A versatile biodegradable seed polysaccharide. Int J Biol Macromol. 2013;60:83–92.

    PubMed  CAS  Google Scholar 

  64. Ughini F, Andreazza IF, Ganter J, Bresolin TMB. Evaluation of xanthan and highly substituted galactomannan from M-scabrella as a sustained release matrix. Int J Pharm. 2004;271(1–2):197–205.

    PubMed  CAS  Google Scholar 

  65. Sujjaareevath J, Munday DL, Cox PJ, Khan KA. Release characteristics of diclofenac sodium from encapsulated natural gum mini-matrix formulations. Int J Pharm. 1996;139(1–2):53–62.

    CAS  Google Scholar 

  66. Gaisford SE, Harding SE, Mitchell JR, Bradley TD. A comparison between the hot and cold water-soluble fractions of 2 locust bean gum samples. Carbohydr Polym. 1986;6(6):423–42.

    CAS  Google Scholar 

  67. Al-Saidan SM, Krishnaiah YSR, Patro SS, Satyanaryana V. In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. AAPS PharmSciTech. 2005;6(1).

    Google Scholar 

  68. Prabaharan M. Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol. 2011;49(2):117–24.

    PubMed  CAS  Google Scholar 

  69. Lewis JH. Esophageal and small-bowel obstruction from guar gum-containing diet pills—Analysis of 26 cases reported to the food-and-drug-administration. Am J Gastroenterol. 1992;87(10):1424–8.

    PubMed  CAS  Google Scholar 

  70. Korner A, Piculell L, Iselau F, Wittgren B, Larsson A. Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets. Molecules. 2009;14(8):2699–716.

    PubMed  Google Scholar 

  71. Farina JI, Sineriz F, Molina OE, Perotti NI. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydr Polym. 2001;44(1):41–50.

    CAS  Google Scholar 

  72. Alhaique F, Carafa M, Riccieri FM, Santucci E, Touitou E. Studies on the release behavior of a polysaccharide matrix. Pharmazie. 1993;48(6):432–6.

    CAS  Google Scholar 

  73. Sriamornsak P. Application of pectin in oral drug delivery. Expert Opin Drug Deliv. 2011;8(8):1009–23.

    PubMed  CAS  Google Scholar 

  74. Nakano M, Ogata A. Examination of natural gums as matrices for sustained-release of theophylline. Chem Pharm Bull. 1984;32(2):782–5.

    PubMed  CAS  Google Scholar 

  75. Picker KM. The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. Eur J Pharm Biopharm. 1999;48(1):27–36.

    PubMed  CAS  Google Scholar 

  76. Gupta VK, Hariharan M, Wheatley TA, Price JC. Controlled-release tablets from carrageenans: Effect of formulation, storage and dissolution factors. Eur J Pharm Biopharm. 2001;51(3):241–8.

    PubMed  CAS  Google Scholar 

  77. Efentakis M, Buckton G. The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices. Pharm Dev Technol. 2002;7(1):69–77.

    PubMed  CAS  Google Scholar 

  78. Timmins P, Delargy AM, Minchom CM, Howard JR. Influence of some process variables on product properties for a hydrophilic matrix controlled release tablet. Eur J Pharm Biopharm. 1992;38(3):113–8.

    CAS  Google Scholar 

  79. Hodsdon AC, Mitchell JR, Davies MC, Melia CD. Structure and behavior in hydrophilic matrix sustained-release dosage forms. 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J Control Release. 1995;33(1):143–52.

    CAS  Google Scholar 

  80. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.

    PubMed  CAS  Google Scholar 

  81. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:235–367.

    Google Scholar 

  82. Rowe R, Sheskey P, Cook W, Fenton M. Handbook of pharmaceutical excipients. In: 7th edition. Pharmaceutical development and technology, 18(2). London: Pharmaceutical Press; 2006.

    Google Scholar 

  83. Sorrenti M, Catenacci L, Bonferoni MC, Sandri G, Caramella C, Bettinetti GP. Thermal characterization of diltiazem and lambda-carrageenan binary systems. J Therm Anal Calorim. 2010;102(1):337–42.

    CAS  Google Scholar 

  84. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C, Aguzzi C, Viseras C. Polyelectrolyte-drug complexes of lambda carrageenan and basic drugs: Relevance of particle size and moisture content on compaction and drug release behavior. Drug Dev Ind Pharm. 2008;34(11):1188–95.

    PubMed  CAS  Google Scholar 

  85. Pavli M, Baumgartner S, Kos P, Kogej K. Doxazosin-carrageenan interactions: A novel approach for studying drug-polymer interactions and relation to controlled drug release. Int J Pharm. 2011;421(1):110–9.

    PubMed  CAS  Google Scholar 

  86. Skaugrud O, Hagen A, Borgersen B, Dornish M. Biomedical and pharmaceutical applications of alginate and chitosan. In: Harding SE, editor. Biotechnology and genetic engineering reviews, vol. 16. Andover: Intercept Ltd Scientific, Technical & Medical Publishers; 1999. p. 23–40.

    Google Scholar 

  87. Draget KI, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 2011;25(2):251–6.

    CAS  Google Scholar 

  88. Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28(6):621–30.

    PubMed  CAS  Google Scholar 

  89. Mayer D, Raschack M, Kesselring K. Development of an oral retard preparation of verapamil and absorption study in anesthetized dog. Arzneimittel-Forschung/Drug Res. 1975;25(8):1272–5.

    CAS  Google Scholar 

  90. Hodsdon AC. Xanthan gum and sodium alginate as sustained release carriers in hydrophilic matrix tablets. School of Pharmacy: University of Nottingham; 1994. Ph.D. Thesis.

    Google Scholar 

  91. Timmins P, Delargy AM, Howard JR. Optimization and characterization of a pH-independent extended-release hydrophilic matrix tablet. Pharm Dev Technol. 1997;2(1).

    Google Scholar 

  92. Howard JR, Timmins P. Controlled release formulation. US Patent US4792452. New York: E.R. Squibb; 1988.

    Google Scholar 

  93. Dennis AB, Timmins P, Hodsdon AC. Nefazodone dosage form. US Patent US6143325. New York: Bristol-Myers Squibb; 2000.

    Google Scholar 

  94. Huang YB, Tsai YH, Lee SH, Chang JS, Wu PC. Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. Int J Pharm. 2005;289(1–2):87–95.

    PubMed  CAS  Google Scholar 

  95. Mujtaba A, Ali M, Kohli K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box-Behnken design. Chem Eng Res Des. 2014;92(1):156–65.

    CAS  Google Scholar 

  96. Haug A, Larsen B, Smidsrod O. Uronic acid sequence in alginate from different sources. Carbohydr Res. 1974;32(2):217–25.

    CAS  Google Scholar 

  97. Liew CV, Chan LW, Ching AL, Heng PWS. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309(1–2):25–37.

    PubMed  CAS  Google Scholar 

  98. Chan LW, Ching AL, Liew CV, Heng PWS. Mechanistic study on hydration and drug release behavior of sodium alginate compacts. Drug Dev Ind Pharm. 2007;33(6):667–76.

    PubMed  CAS  Google Scholar 

  99. Ching AL, Liew CV, Chan LW, Heng PWS. Modifying matrix micro-environmental pH to achieve sustained drug release from highly laminating alginate matrices. Eur J Pharm Sci. 2008;33(4–5):361–70.

    PubMed  CAS  Google Scholar 

  100. Holte O, Onsoyen E, Myrvold R, Karlsen J. Sustained release of water-soluble drug from directly compressed alginate tablets. Eur J Pharm Sci. 2003;20(4–5):403–7.

    PubMed  CAS  Google Scholar 

  101. Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm. 2007;66(3):435–50.

    PubMed  CAS  Google Scholar 

  102. Lu MF, Woodward L, Borodkin S. Xanthan gum and alginate based controlled release theophylline formulations. Drug Dev Ind Pharm. 1991;17(14):1987–2004.

    CAS  Google Scholar 

  103. Johnson FA, Craig DQM, Mercer AD. Characterization of the block structure and molecular weight of sodium alginates. J Pharm Pharmacol. 1997;49(7):639–43.

    PubMed  CAS  Google Scholar 

  104. Sperger DM, Fu S, Block LH, Munson EJ. Analysis of composition, molecular weight, and water content variations in sodium alginate using solid-state NMR spectroscopy. J Pharm Sci. 2011;100(8):3441–52.

    PubMed  CAS  Google Scholar 

  105. Rochefort WE, Middleman S. Rheology of xanthan gum—salt, temperature, and strain effects in oscillatory and steady shear experiments. J Rheol. 1987;31(4):337–69.

    CAS  Google Scholar 

  106. Capron I, Brigand G, Muller G. About the native and renatured conformation of xanthan exopolysaccharide. Polymer. 1997;38(21):5289–95.

    CAS  Google Scholar 

  107. Pankhania MG, Melia CD, Lampard JF. Sustained release pharmaceutical formulation containing xanthan gum. European Patent EP0234670. Great Britain: The Boots Company PLC; 1987.

    Google Scholar 

  108. Zhong L, Oostrom M, Truex MJ, Vermeul VR, Szecsody JE. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater. 2013;244:160–70.

    PubMed  Google Scholar 

  109. Andreopoulos AG, Tarantili PA. Study of biopolymers as carriers for controlled release. J Macromol Sci Phys. 2002;B41(3):559–78.

    CAS  Google Scholar 

  110. Talukdar MM, Kinget R. Swelling and drug-release behavior of xanthan gum matrix tablets. Int J Pharm. 1995;120(1):63–72.

    CAS  Google Scholar 

  111. Talukdar MM, Michoel A, Rombaut P, Kinget R. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery. 1. Compaction and in vitro drug release behaviour. Int J Pharm. 1996;129(1–2):233–41.

    CAS  Google Scholar 

  112. El-Gazayerly ON. Release of pentoxifylline from xanthan gum matrix tablets. Drug Dev Ind Pharm. 2003;29(2):241–6.

    PubMed  CAS  Google Scholar 

  113. Baumgartner S, Pavli M, Kristl J. Effect of calcium ions on the gelling and drug release characteristics of xanthan matrix tablets. Eur J Pharm Biopharm. 2008;69(2):698–707.

    PubMed  CAS  Google Scholar 

  114. Dhopeshwarkar V, Zatz JL. Evaluation of xanthan gum in the preparation of sustained-release matrix tablets. Drug Dev Ind Pharm. 1993;19(9):999–1017.

    CAS  Google Scholar 

  115. Fu S, Thacker A, Sperger DM, Boni RL, Velankar S, Munson EJ, Block LH. Rheological evaluation of inter-grade and inter-batch variability of sodium alginate. AAPS PharmSciTech. 2010;11(4):1662–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Peh KK, Wong CF. Application of similarity factor in development of controlled-release diltiazem tablet. Drug Dev Ind Pharm. 2000;26(7):723–30.

    PubMed  CAS  Google Scholar 

  117. Mikac U, Sepe A, Kristl J, Baumgartner S. A new approach combining different MRI methods to provide detailed view on swelling dynamics of xanthan tablets influencing drug release at different pH and ionic strength. J Control Release. 2010;145(3):247–56.

    PubMed  CAS  Google Scholar 

  118. Gohel MC, Parikh RK, Nagori SA, Jena DG. Fabrication of modified release tablet formulation of metoprolol succinate using hydroxypropyl methylcellulose and xanthan gum. AAPS PharmSciTech. 2009;10(1):62–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Mannion RO, Melia CD, Mitchell JR, Harding SE, Green AP. Effect of xanthan locust bean gum synergy on ibuprofen release from hydrophilic matrix tablets. J Pharm Pharmacol. 1991;43(Suppl):78P.

    Google Scholar 

  120. Mannion RO. Polysaccharide rheological synergy and its application to hydrophilic matrices. School of Pharmacy: University of Nottingham; 1992. Ph.D. Thesis.

    Google Scholar 

  121. Bajwa GS, Hoebler K, Sammon C, Timmins P, Melia CD. Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci. 2006;95(10):2145–57.

    PubMed  CAS  Google Scholar 

  122. Oni Y, Jasmani L, Theilemans W, Inchely A, Burley JC, Melia CD. Understanding the response of xanthan gum hydrophilic matrices to a dissolved salt environment. 40th annual meeting and exposition of Controlled Release Society, Honolulu, Hawaii; 2013.

    Google Scholar 

  123. Pygall SR, Kujawinski S, Timmins P, Melia CD. Mechanisms of drug release in citrate buffered HPMC matrices. Int J Pharm. 2009;370(1–2):110–20.

    PubMed  CAS  Google Scholar 

  124. Billa N, Yuen KH. Formulation variables affecting drug release from xanthan gum matrices at laboratory scale and pilot scale. AAPS PharmSciTech. 2000;1(4).

    Google Scholar 

  125. Albertsson PA. Aqueous polymer phase systems: Properties and applications in bioseparation. In: Harding SE, Hill SE, Mitchell JR, editors. Biopolymer mixtures. Nottingham: Nottingham University Press; 1995. p. 1–12.

    Google Scholar 

  126. Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E. Water uptake and relaxation processes in mixed unlimited swelling hydrogels. Int J Pharm. 2000;209(1–2):45–56.

    PubMed  CAS  Google Scholar 

  127. Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E. Influence of hydrogel structure on the processes of water penetration and drug release from mixed hydroxypropylmethyl cellulose/thermally pregelatinized waxy maize starch hydrophilic matrices. Int J Pharm. 2001;222(1):7–17.

    PubMed  CAS  Google Scholar 

  128. Levina M, Rajabi-Siahboomi AR. The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci. 2004;93(11):2746–54.

    PubMed  CAS  Google Scholar 

  129. Morris ER. Polysaccharide synergism - More questions than answers? In: Harding SE, Hill SE, Mitchell JR, editors. Biopolymer mixtures. Nottingham: Nottingham University Press; 1995. p. 247–88.

    Google Scholar 

  130. Meshali MM, Gabr KE. Effect of interpolymer complex-formation of chitosan with pectin or acacia on the release behavior of chlorpromazine HCL. Int J Pharm. 1993;89(3):177–81.

    CAS  Google Scholar 

  131. Morris VJ, Wilde PJ. Interactions of food biopolymers. Curr Opin Colloid Interface Sci. 1997;2(6):567–72.

    CAS  Google Scholar 

  132. Schorsch C, Garnier C, Doublier JL. Viscoelastic properties of xanthan/galactomannan mixtures: Comparison of guar gum with locust bean gum. Carbohydr Polym. 1997;34(3):165–75.

    CAS  Google Scholar 

  133. Fitzsimons SM, Tobin JT, Morris ER. Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature. Food Hydrocoll. 2008;22(1):36–46.

    CAS  Google Scholar 

  134. Mannion RO, Melia CD, Launay B, Cuvelier G, Hill SE, Harding SE, Mitchell JR. Xanthan locust bean gum interactions at room-temperature. Carbohydr Polym. 1992;19(2):91–7.

    CAS  Google Scholar 

  135. Staniforth JN, Baichwal AR. TIMERx: Novel polysaccharide composites for controlled/programmed release of drugs in the gastrointestinal tract. Expert Opin Drug Deliv. 2005;2(3).

    Google Scholar 

  136. Mu XH, Tobyn MJ, Staniforth JN. Influence of physiological variables on the in vitro drug-release behavior of a polysaccharide matrix controlled-release system. Drug Dev Ind Pharm. 2003;29(1):19–29.

    PubMed  CAS  Google Scholar 

  137. Rajesh KS, Venkataraju MP, Gowda DV. Effect of hydrophilic natural gums in formulation of oral-controlled release matrix tablets of propranolol hydrochloride. Pak J Pharm Sci. 2009;22(2):211–9.

    PubMed  CAS  Google Scholar 

  138. Pringels E, Ameye D, Vervaet C, Foreman P, Remon JP. Starch/Carbopol (R) spray-dried mixtures as excipients for oral sustained drug delivery. J Control Release. 2005;103(3):635–41.

    PubMed  CAS  Google Scholar 

  139. Wilson CG. Biopolymers and colonic drug delivery. In: Rathbone M, Hadgraft J, Roberts MS, Lane MJ, editors. Modified release drug delivery technology. New York: Informa Healthcare; 2008. p. 295–309.

    Google Scholar 

  140. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1–2):19–38.

    PubMed  CAS  Google Scholar 

  141. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6(1):33–66.

    PubMed  CAS  Google Scholar 

  142. Wong TW, Colombo G, Sonvico F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech. 2011;12(1):201–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Ahrabi SF, Madsen G, Sande SA, Graffner C. The in vitro behaviour of some pectin-based matrix tablets for colonic drug delivery. Pharm Res. 1997;14(11 Suppl):S656.

    Google Scholar 

  144. Wei XL, Sun NY, Wu BJ, Yin CH, Wu W. Sigmoidal release of indomethacin from pectin matrix tablets: Effect of in situ crosslinking by calcium cations. Int J Pharm. 2006;318(1–2):132–8.

    PubMed  CAS  Google Scholar 

  145. Ugurlu T, Turkoglu M, Gurer US, Akarsu BG. Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture. Eur J Pharm Biopharm. 2007;67(1):202–10.

    PubMed  CAS  Google Scholar 

  146. Ashford M, Fell J, Attwood D, Sharma H, Woodhead P. Studies on pectin formulations for colonic drug-delivery. J Control Release. 1994;30(3):225–32.

    CAS  Google Scholar 

  147. Washington N, Washington C, Wilson CG. Physiological pharmaceutics. London: Taylor & Francis; 2001.

    Google Scholar 

  148. Krishnaiah YSR, Satyanarayana S, Prasad YVR, Rao SN. Gamma scintigraphic studies on guar gum matrix tablets for colonic drug delivery in healthy human volunteers. J Control Release. 1998;55(2–3):245–52.

    PubMed  CAS  Google Scholar 

  149. Al-Saidan SM, Krishnaiah YSR, Satyanarayana V, Rao GS. In vitro and in vivo evaluation of guar gum-based matrix tablets of rofecoxib for colonic drug delivery. Curr Drug Deliv. 2005;2(2):155–63.

    PubMed  CAS  Google Scholar 

  150. Ahmadi F, Varshosaz J, Emami J, Tavakoli N, Minaiyan M, Mahzouni P, Dorkoosh F. Preparation and in vitro/in vivo evaluation of dextran matrix tablets of budesonide in experimental ulcerative colitis in rats. Drug Deliv. 2011;18(2):122–30.

    PubMed  CAS  Google Scholar 

  151. Alvarez-Mancenido F, Landin M, Martinez-Pacheco R. Konjac glucomannan/xanthan gum enzyme sensitive binary mixtures for colonic drug delivery. Eur J Pharm Biopharm. 2008;69(2):573–81.

    PubMed  CAS  Google Scholar 

  152. Park CR, Munday DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Dev Ind Pharm. 2004;30(6):609–17.

    PubMed  CAS  Google Scholar 

  153. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57(11):1666–91.

    PubMed  CAS  Google Scholar 

  154. Grabovac V, Guggi D, Bernkop-Schnurch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev. 2005;57(11):1713–23.

    PubMed  CAS  Google Scholar 

  155. Moes AJ. Gastroretentive dosage forms. Crit Rev Ther Drug Carrier Syst. 1993;10(2):143–95.

    PubMed  CAS  Google Scholar 

  156. Pawar VK, Kansal S, Asthana S, Chourasia MK. Industrial perspective of gastroretentive drug delivery systems: Physicochemical, biopharmaceutical, technological and regulatory consideration. Expert Opin Drug Deliv. 2012;9(5):551–65.

    PubMed  CAS  Google Scholar 

  157. Streubel A, Siepmann J, Bodmeier R. Floating matrix tablets based on low density foam powder: Effects of formulation and processing parameters on drug release. Eur J Pharm Sci. 2003;18(1):37–45.

    PubMed  CAS  Google Scholar 

  158. Elmowafy E, Awad G, Mansour S, El-Shamy A. Release mechanisms behind polysaccharides-based famotidine controlled release matrix tablets. AAPS PharmSciTech. 2008;9(4):1230–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Dave BS, Amin AF, Patel MM. Gastroretentive drug delivery system of ranitidine hydrochloride: Formulation and in vitro evaluation. AAPS PharmSciTech. 2004;5(2).

    Google Scholar 

  160. Patel A, Modasiya M, Shah D, Patel V. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets. AAPS PharmSciTech. 2009;10(1):310–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Jagdale SC, Agavekar AJ, Pandya SV, Kuchekar BS, Chabukswar AR. Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride. AAPS PharmSciTech. 2009;10(3):1071–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Tobyn MJ, Johnson JR, Dettmar PW. Factors affecting in vitro gastric mucoadhesion. 4. Influence of tablet excipients, surfactants and salts on the observed mucoadhesion of polymers. Eur J Pharm Biopharm. 1997;43(1):65–71.

    CAS  Google Scholar 

  163. Abdelbary A, El-Gazayerly ON, El-Gendy NA, Ali AA. Floating tablet of trimetazidine dihydrochloride: An approach for extended release with zero-order kinetics. AAPS PharmSciTech. 2010;11(3):1058–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: From the mouth to the colon. Int J Pharm. 2010;395(1–2):44–52.

    PubMed  CAS  Google Scholar 

  165. Wong EB. Partially pregelatinized starch as an excipient in HPMC matrices. School of Pharmacy: University of Nottingham; 2009. Ph.D. Thesis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Melia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Melia, C.D., Timmins, P. (2014). Natural Polysaccharides in Hydrophilic Matrices. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_4

Download citation

Publish with us

Policies and ethics