Skip to main content

Evolving Biopharmaceutics Perspectives for Hydrophilic Matrix Tablets: Dosage Form–Food Interactions and Dosage Form Gastrointestinal Tract Interactions

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Abstract

The complexity of the local environment of the gastrointestinal tract presents a significant challenge for achieving reliable performance of hydrophilic matrix oral dosages, and designing robustness into the formulation is key to achieving reproducible behaviour in vivo. This chapter outlines the physiological variables which must be taken into account during the development phase, and describes the different in vitro approaches used in attempts to simulate the interactions that may occur between hydrophilic matrix dosage forms and the GI environment in vivo. A series of in vivo case studies describes methods for assessing the clinical performance of hydrophilic matrix dosages using imaging techniques, and gives examples where such tools have been used to elucidate dosage form–food interactions and dosage form gastrointestinal tract interactions. Key findings are summarised from these in vivo case studies, ranging from identification of food effects to assessment of matrix robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Channer KS, Virjee JP. The effect of size and shape of tablets on their esophageal transit. J Clin Pharmacol. 1986;26(2):141–6.

    PubMed  CAS  Google Scholar 

  2. Marvola M, et al. Effect of dosage form and formulation factors on the adherence of drugs to the esophagus. J Pharm Sci. 1983;72(9):1034–6.

    PubMed  CAS  Google Scholar 

  3. Channer KS, Virjee JP. The effect of formulation on oesophageal transit. J Pharm Pharmacol. 1985;37(2):126–9.

    PubMed  CAS  Google Scholar 

  4. Al-Dujaili H, Florence AT, Salole EG. The adhesiveness of proprietary tablets and capsules to porcine oesophageal tissue. Int J Pharm. 1986;34(1–2):75–9.

    CAS  Google Scholar 

  5. Säkkinen M, et al. Scintigraphic verification of adherence of a chitosan formulation to the human oesophagus. Eur J Pharm Biopharm. 2004;57(1):145–7.

    PubMed  Google Scholar 

  6. Ekberg O, Feinberg MJ. Function in elderly patients without dysphagia: radiologic findings in 56 cases. Am J Roentgenol. 1991;156:1181–4.

    CAS  Google Scholar 

  7. Perkins AC, et al. Impaired oesophageal transit of capsule versus tablet formulations in the elderly. Gut. 1994;35(10):1363–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Hey H, et al. Oesophageal transit of six commonly used tablets and capsules. Br Med J (Clin Res Ed). 1982;285(6356):1717–9.

    CAS  Google Scholar 

  9. Gertz BJ, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther. 1995;58(3):288–98.

    PubMed  CAS  Google Scholar 

  10. Anon, Flomaxtra XL, 400 micrograms, film-coated prolonged release tablet—Summary of Product Characteristics (SPC)—(eMC). http://www.medicines.org.uk/emc/medicine/16484. Accessed 8 Oct 2013a.

  11. Collins FJ, et al. Drug-induced oesophageal injury. Br Med J. 1979;1(6179):1673–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Larzillière I, et al. Esophagitis associated with the use of alendronate. Gastroenterol Clin Biol. 1999;23(10):1098–9.

    PubMed  Google Scholar 

  13. Park BJ, et al. Incidence of adverse oesophageal and gastric events in alendronate users. Pharmacoepidemiol Drug Saf. 2000;9(5):371–6.

    PubMed  CAS  Google Scholar 

  14. Mackay FJ, et al. United Kingdom experience with alendronate and oesophageal reactions. Br J Gen Pract. 1998;1(April):1161–2.

    Google Scholar 

  15. Ueda K, Muto M, Chiba T. A case of esophageal ulcer caused by alendronate sodium tablets. Gastrointest Endosc. 2011;73(5):1037–8.

    PubMed  Google Scholar 

  16. Channer KS, Roberts CJ. Effect of delayed esophageal transit on acetaminophen absorption. Clin Pharmacol Ther. 1985;37(1):72–6.

    PubMed  CAS  Google Scholar 

  17. Colorcon, Modern tablet film coatings and influence on ease of swallowing. pp. 1–6. http://www.colorcon.com/literature/marketing/TabletDesign/ads_ease_of_swallowing_ver2_02_2011.pdf. Accessed 24 Oct 2013.

  18. Perkins AC, et al. Oesophageal transit, disintegration and gastric emptying of a film-coated risedronate placebo tablet in gastro-oesophageal reflux disease and normal control subjects. Aliment Pharmacol Ther. 2001;15(1):115–21.

    PubMed  CAS  Google Scholar 

  19. McLauchlan G, et al. Comparison of gastric body and antral pH: a 24 hour ambulatory study in healthy volunteers. Gut. 1989;30(5):573–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Washington N, Washington C, Wilson C. The stomach. In: Washington N, Washington C, Wilson C, editors. Physiological pharmaceutics: barriers to drug absorption. London: Taylor and Francis; 2001. p. 16–108.

    Google Scholar 

  21. Kamba M, et al. A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int J Pharm. 2000;208(1–2):61–70.

    PubMed  CAS  Google Scholar 

  22. Marciani L, et al. Assessment of antral grinding of a model solid meal with echo-planar imaging Assessment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol Gastrointest Liver Physiol. 2001;280:G844–9.

    PubMed  CAS  Google Scholar 

  23. EMA. Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/03/WC500140482.pdf. Accessed 1 Jan 2014.

  24. FDA. Guidance for industry food-effect bioavailability and fed bioequivalence studies (December). 2002. http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm126833.pdf. Accessed 24 Oct 2013.

  25. Abrahamsson B, et al. A novel in vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach. Pharm Res. 2005;22(8):1215–26.

    PubMed  CAS  Google Scholar 

  26. Abrahamsson B, et al. Drug absorption from nifedipine hydrophilic matrix extended-release (ER) tablet-comparison with an osmotic pump tablet and effect of food. J Control Release. 1998;52(3):301–10.

    PubMed  CAS  Google Scholar 

  27. Abrahamsson B, Roos K, Sjögren J. Investigation of prandial effects on hydrophilic matrix tablets. Drug Dev Ind Pharm. 1999;25(6):765–71.

    PubMed  CAS  Google Scholar 

  28. Steffensen G, Pedersen S. Food induced changes in theophylline absorption from a once-a-day theophylline product. Br J Clin Pharmacol. 1986;22(5):571–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Wonnemann M, et al. Comparison of two marketed nifedipine modified-release formulations: An exploratory clinical food interaction study. Clin Ther. 2008;30(1):48–58.

    PubMed  CAS  Google Scholar 

  30. Garbacz G, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–8.

    PubMed  CAS  Google Scholar 

  31. Fadda HM, Mohamed MAM, Basit AW. Impairment of the in vitro drug release behaviour of oral modified release preparations in the presence of alcohol. Int J Pharm. 2008;360(1):171–6.

    PubMed  CAS  Google Scholar 

  32. Waldman SA, Morganroth J. Effects of food on the bioequivalence of different verapamil sustained-release formulations. J Clin Pharmacol. 1995;35(2):163–9.

    PubMed  CAS  Google Scholar 

  33. Levina M, Vuong H, Rajabi-Siahboomi AR. The influence of hydro-alcoholic media on hypromellose matrix systems. Drug Dev Ind Pharm. 2008;33(10):1125–34.

    Google Scholar 

  34. Roberts M, et al. Influence of ethanol on aspirin release from hypromellose matrices. Int J Pharm. 2007;332(1):31–7.

    PubMed  CAS  Google Scholar 

  35. Center for Drug Evaluation and Research and Public Health Advisories (Drugs)—Public Health Advisory: Suspended Marketing of Palladone (hydromorphone hydrochloride, extended-release capsules). http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/PublicHealthAdvisories/ucm051743.htm. Accessed 24 Oct 2013.

  36. Brouwers J, Tack J, Augustijns P. Parallel monitoring of plasma and intraluminal drug concentrations in man after oral administration of fosamprenavir in the fasted and fed state. Pharm Res. 2007;24(10):1862–9.

    PubMed  CAS  Google Scholar 

  37. Brouwers J, et al. Food-dependent disintegration of immediate release fosamprenavir tablets: In vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur J Pharm Biopharm. 2011;77(2):313–9.

    PubMed  CAS  Google Scholar 

  38. Abrahamsson B, et al. Food effects on tablet disintegration. Eur J Pharm Sci. 2004;22(2–3):165–72.

    PubMed  CAS  Google Scholar 

  39. Davis J, et al. Scintigraphic study to investigate the effect of food on a HPMC modified release formulation of UK-294,315. J Pharm Sci. 2009;98(4):1568–76.

    PubMed  CAS  Google Scholar 

  40. McInnes F, et al. In vivo performance of an oral MR matrix tablet formulation in the beagle dog in the fed and fasted state: Assessment of mechanical weakness. Pharm Res. 2008;25(5):1075–84.

    PubMed  CAS  Google Scholar 

  41. Schug BS, et al. Formulation-dependent food effects demonstrated for nifedipine modified-release preparations marketed in the European Union. Eur J Pharm Sci. 2002;15(3):279–85.

    PubMed  CAS  Google Scholar 

  42. Lukkari E, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol. 1996;50(3):221–3.

    PubMed  CAS  Google Scholar 

  43. Williams HD, et al. Drug release from HPMC matrices in milk and fat-rich emulsions. J Pharm Sci. 2011;100(11):4823–35.

    PubMed  CAS  Google Scholar 

  44. Gruber P, Longer MA, Robinson JR. Some biological issues in oral, controlled drug delivery. Adv Drug Deliv Rev. 1987;1(1):1–18.

    CAS  Google Scholar 

  45. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123–31.

    PubMed  CAS  Google Scholar 

  46. Schiller C, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    PubMed  CAS  Google Scholar 

  47. Washington N, Washington C, Wilson CG. Drug absorption from the small intestine. In: Physiological pharmaceutics: barriers to drug absorption. London: Taylor and Francis. 2001a, p. 110–41.

    Google Scholar 

  48. Khosla R, Davis SS. Gastric emptying and small and large bowel transit of non-disintegrating tablets in fasted subjects. Int J Pharm. 1989;52(1):1–10.

    CAS  Google Scholar 

  49. Abrahamsson B, et al. Gastro-intestinal transit of a multiple-unit formulation (metoprolol CR/ZOK) and a non-disintegrating tablet with the emphasis on colon. Int J Pharm. 1996;5173(96):229–34.

    Google Scholar 

  50. Wilson CG. The transit of dosage forms through the colon. Int J Pharm. 2010;395(1–2):17–25.

    PubMed  CAS  Google Scholar 

  51. Muraoka M, et al. Evaluation of intestinal pressure-controlled colon delivery capsule containing caffeine as a model drug in human volunteers. J Control Release. 1998;52(1–2):119–29.

    PubMed  CAS  Google Scholar 

  52. Kotla NG, et al. Facts, fallacies and future of dissolution testing of polysaccharide based colon-specific drug delivery. J Control Release. 2014;178:55–62.

    PubMed  CAS  Google Scholar 

  53. Goo RH, et al. Circadian variation in gastric emptying of meals in humans. Gastroenterology. 1987;93(3):515–8.

    PubMed  CAS  Google Scholar 

  54. Moore JG, Englert E. Circadian rhythm of gastric acid secretion in man. Nature. 1970;226(5252):1261–2.

    PubMed  CAS  Google Scholar 

  55. Coupe AJ, et al. The effect of sleep on the gastrointestinal transit of pharmaceutical dosage forms. Int J Pharm. 1992;78(1–3):69–76.

    CAS  Google Scholar 

  56. Washington N, Washington C, Wilson CG. Physiological pharmaceutics: barriers to drug absorption. 2nd ed. London: Taylor and Francis; 2001.

    Google Scholar 

  57. Augustijns P, et al. A review of drug solubility in human intestinal fluids: Implications for the prediction of oral absorption. Eur J Pharm Sci. 2013;57:322–32.

    PubMed  Google Scholar 

  58. Varum FJO, Merchant HA, Basit AW. Oral modified-release formulations in motion: the relationship between gastrointestinal transit and drug absorption. Int J Pharm. 2010;395(1–2):26–36.

    PubMed  CAS  Google Scholar 

  59. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.

    PubMed  Google Scholar 

  60. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.

    PubMed  CAS  Google Scholar 

  61. Freire AC, et al. Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. Int J Pharm. 2011;415(1–2):15–28.

    PubMed  CAS  Google Scholar 

  62. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364(2):213–26.

    PubMed  CAS  Google Scholar 

  63. Culen M, Dohnal J. Advances in dissolution instrumentation and their practical applications. Drug Dev Ind Pharm. 2013;9045:1–6.

    Google Scholar 

  64. Kostewicz ES, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66.

    PubMed  CAS  Google Scholar 

  65. Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Gibaldi BM, Feldman S. Establishment of sink conditions in dissolution rate determinations. J Pharm Sci. 1964;56(7):1238–42.

    Google Scholar 

  67. Phillips DJ, et al. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–59.

    PubMed  CAS  Google Scholar 

  68. Garbacz G, Weitschies W. Investigation of dissolution behavior of diclofenac sodium extended release formulations under standard and biorelevant test conditions. Drug Dev Ind Pharm. 2010;36(5):518–30.

    PubMed  CAS  Google Scholar 

  69. Koziolek M, Garbacz G, et al. Simulating the postprandial stomach: Biorelevant test methods for the estimation of intragastric drug dissolution. Mol Pharm. 2013;10(6):2211–21.

    PubMed  CAS  Google Scholar 

  70. Blanquet S, et al. A dynamic artificial gastroinetstinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm Res. 2004;21(4):585–91.

    PubMed  CAS  Google Scholar 

  71. Koziolek M, Görke K, et al. Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach. Eur J Pharm Sci. 2014;57:250–6.

    PubMed  CAS  Google Scholar 

  72. Hoa NT, Kinget R. Design and evaluation of two-phase partition-dissolution method and its use in evaluating artemisinin tablets. J Pharm Sci. 1996;85(10):1060–3.

    PubMed  CAS  Google Scholar 

  73. Grundy JS, et al. Studies on dissolution testing of the nifedipine gastrointestinal therapeutic system. I Description of a two-phase in vitro dissolution test. J Control Release. 2001;48(1997):1–8.

    Google Scholar 

  74. Grundy JS, et al. Studies on dissolution testing of the nifedipine gastrointestinal therapeutic system. II Improved in vitro-in vivo correlation using a two-phase dissolution test. J Control Release. 2001;48(1997):9–17.

    Google Scholar 

  75. Phillips D, et al. Toward biorelevant dissolution: application of a biphasic dissolution model as a discriminating tool for HPMC matrices containing a model BCS class II drug. Dis Technol. 2012;19(February):25–34.

    CAS  Google Scholar 

  76. Heigoldt U, et al. Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in vitro dissolution test. Eur J Pharm Biopharm. 2010;76(1):105–11.

    PubMed  CAS  Google Scholar 

  77. Klein S, et al. Use of the BioDis to generate a physiologically relevant IVIVC. J Control Release. 2008;130(3):216–9.

    PubMed  CAS  Google Scholar 

  78. Vardakou M, et al. Achieving antral grinding forces in biorelevant in vitro models: Comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech. 2011;12(2):620–6.

    PubMed  PubMed Central  Google Scholar 

  79. Garbacz G, et al. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds. Eur J Pharm Sci. 2014;51(October):224–31.

    PubMed  CAS  Google Scholar 

  80. Asare-Addo K, Conway BR, Larhrib H, et al. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids Surf B Biointerfaces. 2013;111C:384–91.

    Google Scholar 

  81. Jantratid E, Dressman J. Biorelevant dissolution media simulating the proximal human gastrointestinal tract: an update. Dis Technol. 2009; August: 21–5.

    Google Scholar 

  82. Asare-Addo K, Conway BR, Hajamohaideen MJ, et al. Aqueous and hydro-alcoholic media effects on polyols. Colloids Surf B Biointerfaces. 2013;111C:24–9.

    Google Scholar 

  83. Vertzoni M, et al. Biorelevant media to simulate fluids in the ascending colon of humans and their usefulness in predicting intracolonic drug solubility. Pharm Res. 2010;27(10):2187–96.

    PubMed  CAS  Google Scholar 

  84. Vertzoni M, et al. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm. 2005;60(3):413–7.

    PubMed  CAS  Google Scholar 

  85. Jantratid E, et al. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm Res. 2008;25(7):1663–76.

    PubMed  CAS  Google Scholar 

  86. Fadda HM, et al. Physiological bicarbonate buffers: Stabilisation and use as dissolution media for modified release systems. Int J Pharm. 2009;382(1–2):56–60.

    PubMed  CAS  Google Scholar 

  87. Marques M. Dissolution media simulating fasted and fed states. Dis Technol. 2004;11(May):16.

    Google Scholar 

  88. Lennernäs H, et al. Oral biopharmaceutics tools—Time for a new initiative—An introduction to the IMI project OrBiTo. Eur J Pharm Sci. 2013;57:292–9.

    PubMed  Google Scholar 

  89. Hendeles L, et al. Food-induced “dose-dumping” from a once-a-day theophylline product as a cause of theophylline toxicity. Chest. 1985;87(6):758–65.

    PubMed  CAS  Google Scholar 

  90. Schug BS, et al. The effect of food on the pharmacokinetics of nifedipine in two slow release formulations: Pronounced lag-time after a high fat breakfast. Br J Clin Pharmacol. 2002;53(6):582–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Karim A, et al. Food-induced changes in theophylline absorption from controlled-release formulations. Part I Substantial increased and decreased absorption with Uniphyl tablets and Theo-Dur Sprinkle. Clin Pharmacol Ther. 1985;38(1):77–83.

    PubMed  CAS  Google Scholar 

  92. Harrison A, et al. Nonlinear oral pharmacokinetics of the alpha-antagonist 4-amino-5-(4-fluorophenyl)-6,7-dimethoxy-2-[4-(morpholinocarbonyl)-perhydro-1,4-diazepin-1-yl]quinoline in humans: use of preclinical data to rationalize clinical observations. Drug Metab Dispos. 2004;32(2):197–204.

    PubMed  CAS  Google Scholar 

  93. Watts PJ, et al. Radiolabelling of polymer microspheres for scintigraphic investigations by neutron activation. 2. Effects of irradiation on the properties of Eudragit RS-sulphasalazine microspheres. Int J Pharm. 1993;98(1):63–73.

    CAS  Google Scholar 

  94. Lui CY, et al. Comparison of gastrointestinal pH in dogs and humans: Implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75(3):271–4.

    PubMed  CAS  Google Scholar 

  95. Akimoto M, et al. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm. 2000;49(2):99–102.

    PubMed  CAS  Google Scholar 

  96. Kamba M, et al. Evaluation of the mechanical destructive force in the stomach of dog. Int J Pharm. 2001;228(1):209–17.

    PubMed  CAS  Google Scholar 

  97. Chiou WL, et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.

    PubMed  CAS  Google Scholar 

  98. Sutton SC. Companion animal physiology and dosage form performance. Adv Drug Deliv Rev. 2004;56(10):1383–98.

    PubMed  CAS  Google Scholar 

  99. Zane P, et al. Use of the pentagastrin dog model to explore the food effects on formulations in early drug development. Eur J Pharm Sci. 2013;57:207–13.

    PubMed  Google Scholar 

  100. Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol. 2001;53(1):33–9.

    PubMed  CAS  Google Scholar 

  101. Hossain M, et al. Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm Res. 1990;7(11):1163–6.

    PubMed  CAS  Google Scholar 

  102. Merchant HA, et al. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci. 2011;42(1):3–10.

    PubMed  CAS  Google Scholar 

  103. Renwick AG, et al. The pharmacokinetics of oral nifedipine—a population study. Br J Clin Pharmacol. 1988;25(6):701–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Toal CB. Formulation dependent pharmacokinetics—does the dosage form matter for nifedipine? J Cardiovasc Pharmacol. 2004;44(1):82–6.

    PubMed  CAS  Google Scholar 

  105. Abrahamsson B, et al. Absorption, gastrointestinal transit, and tablet erosion of felodipine extended-release (ER) tablets. Pharm Res. 1993;10(5):709–14.

    PubMed  CAS  Google Scholar 

  106. Wonnemann M, et al. Significant food interactions observed with a nifedipine modified-release formulation marketed in the European Union. Int J Clin Pharmacol Ther. 2006;44:38–48.

    PubMed  CAS  Google Scholar 

  107. Garbacz G, et al. Comparison of dissolution profiles obtained from nifedipine extended release once a day products using different dissolution test apparatuses. Eur J Pharm Sci. 2009;38(2):147–55.

    PubMed  CAS  Google Scholar 

  108. Mercuri A, et al. Assessing drug release and dissolution in the stomach by means of Dynamic Gastric Model: a biorelevant approach. J Pharm Pharmacol. 2009;61(S1):A5.

    Google Scholar 

  109. Fuertes I, et al. Study of critical points of drugs with different solubilities in hydrophilic matrices. Int J Pharm. 2010;383(1):138–46.

    PubMed  CAS  Google Scholar 

  110. Contreras L, et al. Study of the critical points of experimental HPMC–NaCMC hydrophilic matrices. Int J Pharm. 2010;386(1):52–60.

    PubMed  CAS  Google Scholar 

  111. Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I. Polymer percolation threshold in HPMC extended release formulation of carbamazepine and verapamil HCl. AAPS PharmSciTech. 2010;11(2):558–62.

    PubMed  PubMed Central  Google Scholar 

  112. Leuenberger H. The application of percolation theory in powder technology. Adv Powder Technol. 1999;10(4):323–52.

    Google Scholar 

  113. Ghimire M, et al. In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. J Control Release. 2010;147(1):70–5.

    PubMed  CAS  Google Scholar 

  114. Mullan BP, Camilleri M, Hung JC. Activated charcoal as a potential radioactive marker for gastrointestinal studies. Nucl Med Commun. 1998;19:237–40.

    PubMed  CAS  Google Scholar 

  115. Kearney P, Marriott C. The effects of mucus glycoproteins on the bioavailability of tetracycline. I Dissolution rate. Int J Pharm. 1986;28(1):33–40.

    CAS  Google Scholar 

  116. Weitschies W, et al. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108(2):375–85.

    PubMed  CAS  Google Scholar 

  117. Mäder K, et al. Magnetic Marker Monitoring: An application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv Drug Deliv Rev. 2005;57(8):1210–22.

    Google Scholar 

  118. Stevens HNE, Speakman M. Behaviour and transit of tamsulosin Oral Controlled Absorption System in the gastrointestinal tract. Curr Med Res Opin. 2006;22(12):2323–8.

    PubMed  CAS  Google Scholar 

  119. Michel MC, Korstanje C, Krauwinkel W, Shear M, et al. Cardiovascular safety of the oral controlled absorption system (OCAS) formulation of tamsulosin compared to the modified release (MR) formulation. Eur Urol Suppl. 2005;4(2):53–60.

    CAS  Google Scholar 

  120. Michel MC, Korstanje C, Krauwinkel W, Kuipers M. The pharmacokinetic profile of tamsulosin oral controlled absorption system (OCAS®). Eur Urol Suppl. 2005;4(2):15–24.

    CAS  Google Scholar 

  121. Franco-Salinas G, de la Rosette JJMCH, Michel MC. Pharmacokinetics and pharmacodynamics of tamsulosin in its modified-release and oral controlled absorption system formulations. Clin Pharmacokinet. 2010;49(3):177–88.

    PubMed  CAS  Google Scholar 

  122. Anon, Fosamax—Patient Information Leaflet (PIL)—(eMC). http://www.medicines.org.uk/emc/medicine/3255. Accessed 29 Aug 2013b.

  123. Davis SS, Wilding EA, Wilding IR. Gastrointestinal transit of a matrix tablet formulation: Comparison of canine and human data. Int J Pharm. 1993;94(1):235–8.

    CAS  Google Scholar 

  124. Walden M, et al. The effect of ethanol on the release of opioids from oral prolonged-release preparations. Drug Dev Ind Pharm. 2007;33(10):1101–11.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona MacDougall Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

MacDougall, F., Hodges, L.A., Stevens, H.N.E. (2014). Evolving Biopharmaceutics Perspectives for Hydrophilic Matrix Tablets: Dosage Form–Food Interactions and Dosage Form Gastrointestinal Tract Interactions. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_12

Download citation

Publish with us

Policies and ethics