Skip to main content

Terrestrial Daylight

  • Chapter
  • First Online:
Photobiology

Abstract

Practically all natural daytime light at the Earth’s surface originates in the sun. The fluence rate, as well as spectral and directional distributions, is modified by the gases, clouds, and aerosols in the atmosphere in a way that depends on time and place, as well as by vegetation, snow, and other ground cover. A special section in this chapter is devoted to ultraviolet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aben I, Helderman F, Stam DM, Stamnes P (1999) Spectral fine-structure in the polarisation of skylight. Geophys Res Lett 26:591–594

    Article  CAS  Google Scholar 

  • Bird RE, Riordan C (1986) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J Clim Appl Meteorol 25:87–97

    Article  Google Scholar 

  • Björn LO (1989) Computer programs for estimating ultraviolet radiation in daylight. In: Diffey BL (ed) Radiation measurement in photobiology. Academic, London, pp 161–169

    Chapter  Google Scholar 

  • Björn LO, Holmgren B (1996) Monitoring and modelling of the radiation climate at Abisko. Ecol Bull 45:204–209

    Google Scholar 

  • Björn LO, Murphy TM (1985) Computer calculation of solar ultraviolet radiation at ground level. Physiol Vég 23:555–561

    Google Scholar 

  • Björn LO, Teramura AH (1993) Simulation of daylight ultraviolet radiation and effects of ozone depletion. In: Young AR, Björn LO, Moan J, Nultsch W (eds) UV Photobiology. Plenum Press, New York, pp 41–71

    Chapter  Google Scholar 

  • Bohren CF (1995) Optics, atmospheric. In: Trigg GL (ed) Encyclopedia of applied physics, vol 12. VCH Publishers, New York, pp 405–434

    Google Scholar 

  • Bohren CF (2004) Atmospheric optics. In: Brown TG (ed) The optics encyclopedia: basic foundations and practical applications, vol 1. Wiley, Hoboken, pp 53–91

    Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer theory. Oxford University Press. Reprinted (1960) by Dover Publications, New York

    Google Scholar 

  • Dacke M, Baird E, Byrne M, Scholtz, CH, Warrant EJ (2013) Dung beetles use the milky way for orientation. Curr Biol 23:298–300

    Article  CAS  PubMed  Google Scholar 

  • Grant RH, Heisler GM (1997) Obscured overcast sky radiance distributions for UV and PAR wavebands. J Appl Meteorol 36:1336–1345

    Article  Google Scholar 

  • Grant RH, Gao W, Heisler GM (1996a) Photosynthetically active radiation: sky radiance distributions under clear and overcast conditions. Agric For Meteorol 82:267–292

    Article  Google Scholar 

  • Grant RH, Heisler GM, Gao W (1996b) Clear sky radiance distributions in ultraviolet wavelength bands. Theor Appl Climatol 56:123–135

    Article  Google Scholar 

  • Grant RH, Gao W, Heisler GM (1997) Ultraviolet sky radiance distributions of translucent overcast skies. Theor Appl Climatol 3–4:129–139

    Article  Google Scholar 

  • Green AES (1983) The penetration of ultraviolet radiation to the ground. Physiol Plant 58:351–359

    Article  Google Scholar 

  • Green AES, Chai S-T (1988) Solar spectral irradiance in the visible and infrared regions. Photochem Photobiol 48:477–486

    Article  CAS  PubMed  Google Scholar 

  • Holmes MG, Smith H (1977) Spectral distribution of light within plant canopies. In: Smith H (ed) Plants and the daylight spectrum. Academic, New York, pp 147–158

    Google Scholar 

  • Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Solar Cells 15:365–391

    Article  Google Scholar 

  • Hunt PG, Kasperbauer MJ, Matheny TA, Kasperbauer MJ (1985) Effect of soil surface color and Rhizobium japonicum strain on soybeen seedling growth and nodulation. Agron Abstr 85:157

    Google Scholar 

  • Kasperbauer MJ (1971) Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol 47:775–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasperbauer MJ (1987) Far red light reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiol 85:350–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasperbauer MJ, Hunt PG (1987) Soil color and surface residue effects on seedling light environment. Plant Soil 97:295–298

    Article  Google Scholar 

  • Kasperbauer MJ, Hunt PG (1988) Biological and photometric measurement of light transmission through soils of various colors. Bot Gaz 149:361–364

    Article  Google Scholar 

  • Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an optoelectronic model neurone. J Exp Biol 202:757–770

    PubMed  Google Scholar 

  • Liang SL, Lewis P (1996) A parametric radiative transfer model for sky radiance distribution. J Quant Spectrosc Radiat Transf 55:181–189

    Article  CAS  Google Scholar 

  • Marijnissen JPA, Star WM (1987) Quantitative light dosimetry in vitro and in vivo. Lasers Med Sci 2:235–242

    Article  Google Scholar 

  • Oke S, Fukushige N, Kemmoku Y, Takikawa H, Sakakibara T, Araki K (2010) A new simple model of direct spectral irradiance with easily observable atmospheric parameters. IEEJ Trans 5:548–552

    CAS  Google Scholar 

  • Román R, Antón M, Cazorla A, de Miguel A, Olmo FJ, Bilbao J, Alados-Arboledas L (2012) Calibration of an all-sky camera for obtaining sky radiance at three wavelengths. Atmos Meas Technol 5:2013–2024

    Article  Google Scholar 

  • Schwind R, Horváth G (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaft 80:82–83

    Article  Google Scholar 

  • Smith H (1986) The perception of light quality. In: Kendrick RE, Kronenberg GMH (eds) Photomorphogenesis in plants. Martinus Nijhoff Publishers, Dordrecht, pp 187–217

    Chapter  Google Scholar 

  • Star WM, Marijnissen HPA, Jansen H, Keijzer M, van Gemert MJC (1987) Light dosimetry for photodynamic therapy by whole bladder wall irradiation. Photochem Photobiol 46:619–624

    Article  CAS  PubMed  Google Scholar 

  • Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations in the water molecule. ISME J 1:271–282

    CAS  PubMed  Google Scholar 

  • Vogelmann TC (1986) Light within the plant. In: Kendrick RE, Kronenberg GMH (eds) Photomorphogenesis in plants. Martinus Nijhoff Publishers, Dordrecht, pp 307–337

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Olof Björn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björn, L.O. (2015). Terrestrial Daylight. In: Björn, L. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1468-5_6

Download citation

Publish with us

Policies and ethics