Skip to main content

The Mouse Hindbrain: An In Vivo Model to Analyze Developmental Angiogenesis

  • Protocol
  • First Online:
Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1214))

Abstract

Angiogenesis, defined as the sprouting of new blood vessels from preexisting ones, is a biological process of great clinical relevance due to its involvement in disease as well as its therapeutic potential for revascularizing ischemic tissues. The embryonic mouse hindbrain provides an excellent model to study the molecular and cellular mechanisms of angiogenesis in vivo due the simple geometry of the hindbrain vasculature and its easy accessibility for fluorescent or histochemical staining, and for image capture and quantitation. This chapter outlines protocols for dissection, staining, and analysis of the mouse embryo hindbrain vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  CAS  PubMed  Google Scholar 

  2. Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M, Pollard JW et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121:2352–2362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fantin A, Vieira JM, Plein A, Maden CH, Ruhrberg C (2013) The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat Protoc 8:418–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ruhrberg C, Bautch VL (2013) Neurovascular development and links to disease. Cell Mol Life Sci 70:1675–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    CAS  PubMed  Google Scholar 

  7. Raab S, Beck H, Gaumann A, Yüce A, Gerber HP, Plate K et al (2004) Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost 91:595–605

    CAS  PubMed  Google Scholar 

  8. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pitulescu ME, Schmidt I, Benedito R, Adams RH (2010) Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat Protoc 5:1518–1534

    Article  CAS  PubMed  Google Scholar 

  11. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10:77–88

    Article  PubMed  Google Scholar 

  12. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  13. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231:503–509

    Article  CAS  PubMed  Google Scholar 

  14. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  CAS  PubMed  Google Scholar 

  15. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  16. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J, Damert A et al (2003) Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 262:225–241

    Article  CAS  PubMed  Google Scholar 

  17. Spring H, Schüler T, Arnold B, Hämmerling GJ, Ganss R (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A 102:18111–18116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Laitinen L (1987) Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19:225–234

    Article  CAS  PubMed  Google Scholar 

  20. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6:e27385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

CR and AF are supported by a Wellcome Trust New Investigator Award to CR [095623/Z11/Z] and AP by a PhD studentship from the British Heart Foundation [FS/10/54/28680].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana Ruhrberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Plein, A., Ruhrberg, C., Fantin, A. (2015). The Mouse Hindbrain: An In Vivo Model to Analyze Developmental Angiogenesis. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 1214. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1462-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1462-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1461-6

  • Online ISBN: 978-1-4939-1462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics