Skip to main content

Flax and Linseed

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Flax has a long history of utilization dating back to ancient times. This dual-purpose crop is believed to have originated somewhere in Central Asia, Near East, or Mediterranean region with oil flax (linseed) predating fiber use (fiber flax). Current breeding work on the crop focuses on several characteristics of the oil and fiber to make the crop more competitive for use in the food industry and as source of bioproducts. For both types, increasing yield and improving resistance to lodging, pests, and fungal diseases are important goals. Genetic resources collections of flax are abundant, and breeding programs have been integrating new biotechnology applications into crop research and improvement activities. Overall, global crop production of flax is decreasing, though the trend in opposite in linseed has slight increase in Canada, Egypt, and some member countries of the European Union (EU). The policy environment significantly affects linseed production in the EU and has substantial influence on the marketing and commercialization strategies of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zohary D, Hopf M. Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford: Oxford University Press; 2000. p. 316.

    Google Scholar 

  2. Dewilde B. 20 eeuwen vlas in Vlaanderen. Tielt: Lannoo; 1983. 439 pp.

    Google Scholar 

  3. Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z, Mesheveliani T. 30,000-year-old wild flax fibers. Science. 2009;325:1359.

    CAS  PubMed  Google Scholar 

  4. SITUAČNÍ a VÝHLEDOVÁ ZPRÁVA LEN a KONOPÍ, Mze, Těšnov, Praha, Červen 2009, 44 s.

    Google Scholar 

  5. SITUAČNÍ a VÝHLEDOVÁ ZPRÁVA LEN a KONOPÍ, Mze, Těšnov, Praha, Červen 2010, 47 s.

    Google Scholar 

  6. Rowland GG. Growing flax: production, management and diagnostic guide. Saskatoon: Flax Council of Canada and Saskatchewan Flax Development Commission; 1998.

    Google Scholar 

  7. Thompson LU, Cunnane SC. Flaxseed in human nutrition. 2nd ed. Champaign: AOCS Publishing; 2003.

    Google Scholar 

  8. Vaisey-Genser M, Morris DH. Introduction: history of the cultivation and uses of flaxseed. In: Muir AD, Westcott ND, editors. Flax: the genus Linum. London: Taylor & Francis; 2003. p. 1–21.

    Google Scholar 

  9. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. Am Coll Nutr. 2002;21(6):495–505.

    CAS  Google Scholar 

  10. Prasad K. Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis. 1997;132(1):69–76.

    CAS  PubMed  Google Scholar 

  11. Lucas EA, Lightfoot SA, Hammond LJ, et al. Flaxseed reduces plasma cholesterol and atherosclerotic lesion formation in ovariectomized Golden Syrian hamsters. Atherosclerosis. 2004;173:223–9.

    CAS  PubMed  Google Scholar 

  12. Oomah BD. Flaxseed as a functional food source. J Sci Food Agric. 2001;81:889–94.

    CAS  Google Scholar 

  13. Bloedon LT, Szapary PO. Flaxseed and cardiovascular risk. Nutr Rev. 2004;62:18–27.

    PubMed  Google Scholar 

  14. Hall C, Tulbek MC, Xu Y. Flaxseed. Adv Food Nutr Res. 2006;51:1–97.

    CAS  PubMed  Google Scholar 

  15. Basch E, Bent S, Collins J, et al. Flax and flaxseed oil (Linum usitatissimum): a review by the Natural Standard Research Collaboration. J Soc Integr Oncol. 2007;5:92–105.

    PubMed  Google Scholar 

  16. Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TM, Jenkins DJ. Nutritional attributes of traditional flaxseed in healthy young adults. Am J Clin Nutr. 1995;61:62–8.

    CAS  PubMed  Google Scholar 

  17. Bierenbaum ML, Reichstein R, Watkins TR. Reducing atherogenic risk in hyperlipemic humans with flaxseed supplementation: a preliminary report. J Am Coll Nutr. 1993;12:501–14.

    CAS  PubMed  Google Scholar 

  18. Lee TH, Hoover RL, Williams MD, et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med. 1985;312:1217–24.

    CAS  PubMed  Google Scholar 

  19. Simopoulos A. Omega-3 fatty acids in health and disease in growth and development. Am J Clin Nutr. 1991;54:438–63.

    CAS  PubMed  Google Scholar 

  20. Sanders TAB, Roshanai F. The influence of different types of w3 polyunsaturated fatty acids on blood lipids and platelet function in healthy volunteers. Clin Sci. 1983;64:91–9.

    CAS  PubMed  Google Scholar 

  21. Adam O, Wolfram G, Zöllner N. Effect of a-linolenic acid in the human diet on linoleic acid metabolism and prostaglandin biosynthesis. J Lipid Res. 1986;27:421–6.

    CAS  PubMed  Google Scholar 

  22. Kelley DS, Nelson GJ, Love JE, et al. Dietary a-linolenic acid alters tissue fatty acid composition, but not blood lipids, lipoproteins or coagulation status in humans. Lipids. 1993;28:533–7.

    CAS  PubMed  Google Scholar 

  23. Chan JK, McDonald BE, Gerrard JM, Bruce VM, Weaver BJ, Holub BJ. Effect of dietary a-linolenic acid and its ratio to linoleic acid on platelet and plasma fatty acids and thrombogenesis. Lipids. 1993;28:811–17.

    CAS  PubMed  Google Scholar 

  24. Mantzioris E, James MJ, Gibson RA, Cleland LG. Dietary substitution with an a-linolenic acid-rich vegetable oil increases eicosapentaenoic acid concentrations in tissues. Am J Clin Nutr. 1994;59:1304–9.

    CAS  PubMed  Google Scholar 

  25. Pan A, Yu D, Demark-Wahnefried W, et al. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr. 2009;90:288–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Bjelková M, Nôžková J, Fatrcová-Šramková K, Tejklová E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunsaturated fatty acids. Chem Pap. 2012;66(10):972–6.

    Google Scholar 

  27. Lay CL, Dybing CD. Linseed. In: Robbelen G et al., editors. Oil crops of the world. New York: McGraw-Hill; 1989. p. 416–30.

    Google Scholar 

  28. Vavilov NI. Studies in the origin of cultivated plants. Moscow: Leningrad, Vsesoiuz. Inst. Priklad; 1926.

    Google Scholar 

  29. Gill KS. Linseed. New Delhi: Indian Council of Agricultural Research; 1987. 186 pp.

    Google Scholar 

  30. Rakouský S, Tejklová E, Wiesner I, Wiesnerová D, Kocábek T, Ondřej M. Hygromycin B – an alternative in flax transformant selection. Biologia Plant. 1999;42:361–9.

    Google Scholar 

  31. de Candolle A. Origin of cultivated plants. London: Kegan Paul, Trench, Trulener and Co. Ltd.; 1904.

    Google Scholar 

  32. Zeven AC, de Wet JMJ. Dictionary of cultivated plants and their regions of diversity. Wageningen: Pudoc, Centre for Agricultural Publishing and Documentation; 1975. 263 pp.

    Google Scholar 

  33. Uysal H, Fu YB, Kurt O, Peterson GW, Diederichsen A, Kusters P. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet Resour Crop Evol. 2010;57:1109–19.

    CAS  Google Scholar 

  34. Richharia RH. Linseed. The Indian Central Oilseeds Committee: Hyderabad, India; 1962.

    Google Scholar 

  35. Heer O. Uber den Flachs und die Flachskultur im Altertum. Neujahrsblatt der Naturforschenden Gesellschaft auf das Jahr. Zurich: Zürcher und Furrer; 1872.

    Google Scholar 

  36. Diedrichsen A, Hammer K. Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.). Genet Resour Crop Evol. 1995;42:263–72.

    Google Scholar 

  37. Fu YB. Redundancy and distinctness in flax germplasm are revealed by RAPD. Plant Genet Resour. 2002;4:117–24.

    Google Scholar 

  38. Gill KS, Yermanos DM. Cytogenetic Studies on Genus Linum. I. Hybrids among taxa with 15 as haploid chromosome number. Crop Sci. 1967;7:623–6.

    Google Scholar 

  39. Gill KS, Yermanos DM. Cytogenetic Studies on Genus Linum. II. Hybrids among taxa with 9 as haploid chromosome number. Crop Sci. 1967;7:627–31.

    Google Scholar 

  40. Dillman AC. Improvement in flax. In: Year Book of Agriculture 1936, United States of America Department of Agriculture. Washington, DC: USDA; 1936. p. 745–84.

    Google Scholar 

  41. Diederichsen A, Fu YB. Phenotypic and molecular (RAPD) differentiation of four infraspecific groups of cultivated flax (Linum usitatissimum L. subsp. usitatissimum). Genet Resour Crop Evol. 2006;53:77–90.

    CAS  Google Scholar 

  42. Kikuchi M. Cytological studies of the genus Linum. Jpn J Genet. 1929;4:201–10.

    Google Scholar 

  43. Ray CJ. Cytological studies in the flax genus Linum. Am J Bot. 1944;31:441–8.

    Google Scholar 

  44. Murre M. Vezelvlas. Meppel: Uitgeverij Ceres; 1955. 112 pp.

    Google Scholar 

  45. Tutin TG, Heywood VH, Burges NA, Murre DM, Valentine DH, Walters SM, Webb DM, editors. Flora Europaea: Rosaceae to Umbelliferae, vol. 2. Cambridge: Cambridge University Press; 1968. p. 206–11.

    Google Scholar 

  46. Zohary D, Hopf M. Domestication of plants in the old world. 2nd ed. Oxford: Oxford University Press; 1993. 278 pp.

    Google Scholar 

  47. Muravenko OV, Lemesh VA, Samatadze TE, Amosova AV, Grushetskaya ZE, Popov KV, Semenova OY, Khotyuleva LV, Zelenin AV. Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russ J Genet. 2003;39:414–21.

    CAS  Google Scholar 

  48. Williams IH. The pollination of linseed and flax. Bee World. 1988;69:145–52.

    Google Scholar 

  49. Fu YB, Peterson G, Diederichsen A, Richards KW. RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol. 2002;49:253–9.

    Google Scholar 

  50. Fu YB, Diederichsen A, Richards KW, Peterson G. Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Genet Resour Crop Evol. 2002;49:167–74.

    Google Scholar 

  51. Vromans J. Molecular genetic studies in flax (Linum usitatissimum L.). Ph.D. thesis. Wageningen: Wageningen University; 2006.

    Google Scholar 

  52. Ohlrogge JB, Jaworski JG. Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:109–36.

    CAS  PubMed  Google Scholar 

  53. Allaby RG, Peterson G, Merriwether DA, Fu YB. Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theor Appl Genet. 2005;112:58–65.

    CAS  PubMed  Google Scholar 

  54. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet. 2011;122:1385–97.

    PubMed  Google Scholar 

  55. FAOSTAT. Food and Agriculture Organization of the United States. http://faostat.fao.org. Accessed 9 Apr 2014.

  56. Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  57. Pavelek M. International flax data base – status of the recent development, lecture. In: Frese L, Hoekstra R, compilers. Report of a Network Coordinating Group on sugar, starch and fibre crops, third meeting, 8–9 Oct 2009; Quedlinburg

    Google Scholar 

  58. Faberová I. EURISCO, finding seeds for the future, EURISCO external evaluation/assessment: needs and recommendations for setting a road map. Bioversity International; 2009 31 pp. + Annexes 1–9.

    Google Scholar 

  59. Pavelek M, Tejklová E, Ondřej M, Vrbová M. Developments in fibrous flax breeding and cultivation. In: Kozlowski R.M. (Ed.): Handbook of natural fibres, volume 1: types, properties and factors affecting breeding and cultivation, Woodhead Publishing in textiles, vol. 118. Oxford/Cambridge/ Philadelphia/New Delhi: Woodhead Publishing Limited; 2012. p. 393–468.

    Google Scholar 

  60. Shamov. Status of the Bulgarian national flax collection. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001. p. 14–8.

    Google Scholar 

  61. Green AG. A mutant genotype of flax (Linum usitatissimum L.) containing very low levels of linolenic acid in its seed oil. Can J Plant Sci. 1986;66:499–503.

    CAS  Google Scholar 

  62. Pavelek M. Status of national collections – Czech Republic. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  63. Pavelek M. International flax database. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  64. Fouilloux G, Dorvillez D, Blouet F. The French flax and linseed germplasm collection – status (2001). In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  65. Dehmer K, Frese L, Freytag U, Knupfer H, Kurch R, Schutze G. Status report on the Linum collections in German genebanks. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers (2001). Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  66. Simon A. Status of the Hungarian national Linum collection. In: Maggioni L., Pavelek M., van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  67. Soest LJ. Status of national collections – the Netherlands. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  68. Rutkowska-Krause I. The flax and hemp collection of the Institute of Natural Fibres, Poland. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  69. Strajeru S. The Romanian flax collection. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  70. Vasile I. Progress in fibre flax breeding at the Agricultural Research Station Livada, Romania. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  71. Brutch N. The flax genetic resources collection held at the Vavilov Institute, Russian Federation. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax genetic resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  72. Virovets V, Loginov MI, Mukuvoz V, Yu, Kozub LN. The Ukrainian fibre flax collection and related breeding activities. In: Maggioni L, Pavelek M, van Soest LJM, Lipman E, compilers. Flax Genetic Resources in Europe. Ad hoc meeting, 7–8 Dec 2001, Prague, Czech Republic. Rome: International Plant Genetic Resources Institute; 2001.

    Google Scholar 

  73. Mandolino G. National collection – status report, Italy. In: Bas N, Pavelek M, Maggioni L, Lipman E, compilers. ECP/GR, report of a working group on fibre crops (flax and hemp). First meeting, 14–16 June 2006, Wageningen; 2006

    Google Scholar 

  74. Grauda D. National collection – status report, Latvia. In: Bas N, Pavelek M, Maggioni L, Lipman E, compilers. ECP/GR, report of a working group on fibre crops (flax and hemp). First meeting, 14–16 June 2006, Wageningen; 2006.

    Google Scholar 

  75. De Sousa T. National collection – status report, Portugal. In: Bas N, Pavelek M, Maggioni L, Lipman E, compilers. ECP/GR, report of a working group on fibre crops (flax and hemp). First meeting, 14–16 June 2006, Wageningen; 2006.

    Google Scholar 

  76. Nožková J. National collection – status report, Slovakia. In: Bas N, Pavelek M, Maggioni L, Lipman E, compilers. ECP/GR, report of a working group on fibre crops (flax and hemp). First meeting, 14–16 June 2006, Wageningen; 2006.

    Google Scholar 

  77. Jankauskienne Z. National collection – status report, Latvia. In: Bas N, Pavelek M, Maggioni L, Lipman E, compilers. ECP/GR, report of a working group on fibre crops (flax and hemp). First meeting, 14–16 June 2006, Wageningen; 2006.

    Google Scholar 

  78. Everaert I, de Riek J, de Loose M, van Waes J, van Bockstaele E. Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Varieties Seeds. 2001;14:69–78.

    Google Scholar 

  79. Fu YB. Geographic patterns of RAPD variation in cultivated flax. Crop Sci. 2005;45:1084–91.

    CAS  Google Scholar 

  80. Cloutier S, Niu Z, Datla R, Duguid S. Development and analysis of EST-SSRs for flax (Linum usitatissimum L). Theor Appl Genet. 2009;119:53–63.

    CAS  PubMed  Google Scholar 

  81. Wiesnerová D, Wiesner I. ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol Biotechnol. 2004;26:207–14.

    PubMed  Google Scholar 

  82. Vukich M, Schulman AH, Giordani T, Natali L, Kalendar R, Cavallini A. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet. 2009;119:1027–38.

    CAS  PubMed  Google Scholar 

  83. Antonius-Klemola K, Kalendar R, Schulman AH. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet. 2006;112:999–1008.

    CAS  PubMed  Google Scholar 

  84. Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc. 2006;1:2478–84.

    CAS  PubMed  Google Scholar 

  85. Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet. 2008;117:413–24.

    PubMed  Google Scholar 

  86. Lipman E, Jongen MWM, van Hintum Th. JL, Gass T, Maggioni L, compilers. Central crop databases. Tools for plant genetic resources management. Wageningen/Rome: International Plant Genetic Resources Institute; 1997.

    Google Scholar 

  87. Pavelek M. Further development of International Flax Data Base and special descriptors for more detail evaluation of agronomic and processing characters, pp. 1–13. Breeding for fibre and oil quality in flax. In: Proceedings of the third meeting of the International flax breeding group, 7–8 Nov 1995, St. Paris: Valery en Caux, France, Centre technigue pour l‘étude et l‘amélioration du lin (CETEAL); 1995.

    Google Scholar 

  88. Pavelek M. Discussion for IFDB standard varieties. Euroflax Newsletter 1(7):17–20. Information bulletin of the FAO European Cooperative Research Network on flax and other bast plants. Poznan: Institute of Natural Fibres – Coordination Centre of the FAO Network on Flax and Other Bast Plants; 1997.

    Google Scholar 

  89. Pavelek M. International flax data base – poster. ECP/GR steering committee meeting, symposium on implementation of the GPA in Europe. Braunschweig; 29 June–5 July 1998. p 370–1.

    Google Scholar 

  90. Pavelek M. Analysis of current state of International Flax Data Base – lecture. In: Proceedings of the bast fibrous plants today and tomorrow, breeding, molecular biology and biotechnology beyond 21st century, St. Petersburg; 28–30 September 1998. p 36–44.

    Google Scholar 

  91. Pavelek M, Tejklová E, Horáček J. Flax national collection, international flax data base and breeding of flax, Linseed and both types in the Czech Republic. In: Proceedings of the second global workshop “Bast plants in the new millennium”, 3–6 June, Borovets; 2001. p 64–78.

    Google Scholar 

  92. Nandy S, Rowland GG. Dual purpose flax (Linum usitatissimum L.) improvement using anatomical and molecular approaches. In: Proceedings of the international conference on flax and other bast plants. Saskatoon; 21–23 July 2008. p 31–39.

    Google Scholar 

  93. Easson DL, Molloy RM. A study of the plant, fibre and seed development in flax and linseed (Linum usitatissimum L.) grown at a range of seed rates. J Agric Sci. 2000;135:361–9.

    Google Scholar 

  94. Foster R, Pooni HS, Mackay IJ. Quantitative evaluation of Linum usitatissimum varieties for dual purpose traits. J Agric Sci. 1997;129(2):121–4.

    Google Scholar 

  95. Foster R, Pooni HS, Mackay IJ. Quantitative analysis of Linum usitatissimum crosses for dual-purpose traits. J Agric Sci. 1997;131:285–92.

    Google Scholar 

  96. Foster R, Pooni HS, Mackay IJ. Quantitative analysis of Linum usitatissimum crosses for dual purpose traits. J Agric Sci. 1998;131(3):285–92.

    Google Scholar 

  97. Sankari HS. Bast fibre content, fibre yield and fibre quality of different linseed genotypes. Agric Food Sci Finland. 2000;9:79–87.

    Google Scholar 

  98. Sankari HS. Linseed (Linum usitatissimum L.) cultivars and breeding lines as stem biomass producers. J Agron Crop Sci-Zeitschrift Fur Acker Und Pflanzenbau. 2000;184:225–31.

    Google Scholar 

  99. Foster R, Pooni HS, Mackay IJ. The potential of selected Linum usitatissimum L. crosses for producing recombinant inbred lines with dual purpose characteristics. J Agric Sci. 2000;134(4):399–404.

    Google Scholar 

  100. Scheer-Triebel M, Bartsch C. Selektion in frühen Generationen des Leins in Hinblick auf das Zuchtziel einer gleichzeitigen Nutzung von Faser und Öl. Die Bodenkultur. 1992; 43: 147–59. ISSN 0006-5471.

    Google Scholar 

  101. Keijzer P, Metz P. Breeding of flax for fibre production in Western Europe. In: Sharma HSS, van Sumere C, editors. Biology and processing of flax. Belfast: M Publications; 1990. p. 33–66.

    Google Scholar 

  102. Dimmock JPRE, Bennett SJ, Wright D, Edwards-Jones G, Harris IM. Agronomic evaluation and performance of flax varieties for industrial fibre production. J Agric Sci. 2005;143:1–12.

    Google Scholar 

  103. Green AG. Genetic modification of seed fatty acid composition in Linum usitatissimum L. J Aust Inst Agric Sci. 1986;52(3):175–6.

    Google Scholar 

  104. Green AG. The evaluation of Linola as a new oilseed crop for Australia. In: Proceedings of 6th Australian Society of agronomy conference. Armidale; 1992. p. 471–4

    Google Scholar 

  105. Dribnenki JCP, Mceachern SF, Green AG, Kenaschuk EO, Rashid KY. LinolaTM ‘1084’ low-linolenic acid flax. Can J Plant Sci. 1999;79(4):607–9.

    Google Scholar 

  106. Dribnenki JCP, Mceachern SF, Chen Y, Green AG, Rashid KY. LinolaTM ‘2047’ low-linolenic acid flax. Can J Plant Sci. 2003;83(1):81–3.

    Google Scholar 

  107. Dribnenki JCP, Mceachern SF, Chen Y, Green AG, Rashid KY. LinolaTM ‘2090’ low-linolenic acid flax. Can J Plant Sci. 2004;84(3):797–9.

    Google Scholar 

  108. Pavelek M, Tejklová E. Linum usitatissimum L., Linseed Amon. Czech J Genet Plant Breed. 2007;43(4):149–55.

    Google Scholar 

  109. Tejklová E, Bjelková M, Pavelek M. Medium-linolenic linseed (Linum usitatissimum L.) Raciol. Czech J Genet Plant Breed. 2011;47(3):128–30.

    Google Scholar 

  110. Pavelek M, Tejklová E, Bjelková M. Results of linseed breeding in the Czech Republic. 61. Tagung der Vereinigung der Pflfl anzenzüchter und Saatgutkauflfleute Österreichs 2010, 1–3. ISBN 978-3-902559-53-1, @ 2011.

    Google Scholar 

  111. Rosenberg L. Haploidní rostliny Linum usitatissimum L. Len a konopí. 1974;2:107–14.

    Google Scholar 

  112. Nichterlein K, Nickel M, Umbach H, Friedt W. New methods and recent progress in the breeding of flax. In: Proceedings of European regional workshop on flax. 2. Brno; 18–20 June 1991. p. 175–83.

    Google Scholar 

  113. Nichterlein K, Friedt W. Plant regeneration from isolated microspores of linseed (Linum usitatissimum L.). Plant Cell Rep. 1993;12:426–30.

    CAS  PubMed  Google Scholar 

  114. Bartošová Z, Preťová A. Induction of callogenesis in ovary and anther cultures of flax. In: Proceedings of the 10. scientific seminar. November 2003. Piešťany; 2003. p. 25–8.

    Google Scholar 

  115. Bartošová Z, Roux N, Preťová A. Ovary culture in Linum usitatissimum L. In: Proceedings of the XI international conference on plant embryology. Brno; Sept 2003. p. 116.

    Google Scholar 

  116. Bartošová Z, Roux N, Preťová A. Green plants regenerated from ovary culture in flax (Linum usitatissimum L.). In: Book of abstracts, 5th international symposium in the series recent advances in plant biotechnology, Stará Lesná; 7–13 Sept 2003. p. 65.

    Google Scholar 

  117. Obert B, Bartošová Z, Preťová A. Dihaploid production in flax by anther and ovary culture. J Nat Fibres. 2004;1(3):1–14.

    CAS  Google Scholar 

  118. Obert B, Bartošová Z, Preťová A. Dihaploid production in fl ax by anther and ovary cultures. J Nat Fibers. 2005;1(3):1–14.

    Google Scholar 

  119. Bartošová Z, Obert B, Takáč T, Kormuťák A, Preťová A. Using enzyme polymorphism to identify the gametic origin of flax regenerants. Acta Biol Cracov Bot. 2005;47(1):73–178.

    Google Scholar 

  120. Bartošová Z, Masar S, Preťová A. Flax plant regenerated from unpollinated ovules cultured in ovary segments. Acta Hortic. 2006;725(2):869–71.

    Google Scholar 

  121. Poliakov AV, Loshakova NI, Krylova TV, Rutkowska-Krause I, Trouve JP. Perspectives of haploids use for flax improvement (Linum usitatissimum L.). In: KozlowskiR, editor. Report of flax Genetic resources workshop, 2nd meeting of European cooperative network on flax. Brno; 8–10 Nov 1994. p. 38–44.

    Google Scholar 

  122. Sun H. Preliminary report on anther culture of flax. Ko’ Hsueh Tung Pao Exue Tong Bao. 1979;24:948–50.

    Google Scholar 

  123. Sun H, Fu V. Induction of pollen plants in flax (Linum usitatissimum L.) and preliminary observations on performance of their progenies. Acta Genet Sinica. 1981;8:369–74.

    Google Scholar 

  124. van Treuren R, van Soest LJM, van Hintum TJL. Marker –assisted rationalisation of genetic resource collections: a case study in flax using AFLPs. Theor Appl Genet. 2004;103:144–52.

    Google Scholar 

  125. Hepburn AG, Clarke LE, Blumdy KS, White J. Nopaline Ti-plasmid, pTiT37, T-DNA insertions into flax genome. Mol Appl Genet. 1983;2:211–24.

    CAS  Google Scholar 

  126. Jordan MC, McHughen A. Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Rep. 1988;7:281–4.

    CAS  PubMed  Google Scholar 

  127. Jordan MC, McHughen A. Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep. 1988;7:285–7.

    CAS  PubMed  Google Scholar 

  128. McHughen A, Jordan M, Feist G. A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. J Plant Physiol. 1989;135:245–8.

    Google Scholar 

  129. Dong JZ, McHughen A. An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci. 1993;88:61–71.

    CAS  Google Scholar 

  130. Wijayanto T, McHughen A. Genetic transformation of Linum by particle bombardment. In Vitro Cell Dev Biol Plant. 1999;35:456–65.

    CAS  Google Scholar 

  131. Bretagne-Sagnard B, Chupeau Y. Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Res. 1996;5:131–7.

    CAS  Google Scholar 

  132. Lamblin F, Aimé A, Hano C, Roussy I, Domon JM, Van Droogenbroeck B, Lainé E. The use of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum). Plant Cell Rep. 2007;26:765–72.

    CAS  PubMed  Google Scholar 

  133. Hraška M, Rakouský S, Čurn V. Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tiss Organ Cult. 2006;86:303–18.

    Google Scholar 

  134. Lorenc-Kukula K, Wróbel-Kwiatkowska M, Starzycki M, Szopa J. Engineering flax with increased flavonoid content and thus Fusarium resistance. Phys Mol Plant Path. 2007;70:38–48.

    CAS  Google Scholar 

  135. Wróbel M, Zebrowski J, Szopa J. Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol. 2004;107:41–54.

    PubMed  Google Scholar 

  136. Vrbová M, Horácek J, Smýkal P, Griga M. Flax (Linum usitatissimum L.) transformation with heavy metal binding protein genes. In: Sehnal F, Drobník J, editors. White book of genetically modified crops. EU regulations and research experience from the Czech Republic. Ceské Budejovice: Biology Centre AS CR; 2009. p. 57.

    Google Scholar 

  137. Bjelková M, Genčurová V, Griga M. Accumulation of cadmium by flax and linseed varieties in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crops Prod. 2011;33:761–74.

    Google Scholar 

  138. Griga M, Bjelková M. Flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) as fibre crops for phytoextraction of heavy metals: biological, agro-technological and economical point of view. In: Gupta DK, editor. Plant-based remediation processes, Soil biology, vol. 35. Berlin: Springer; 2013. p. 199–237.

    Google Scholar 

  139. Diepenbrock W, Porksen N. Phenotypic plasticity in growth and yield components of linseed (Linum usitatissimum L) in response to spacing and N-nutrition. J Agron Crop Sci-Zeitschrift Fur Acker Und Pflanzenbau. 1992;169:46–60.

    CAS  Google Scholar 

  140. Casa R, Russell G, Lo Cascio B, Rossini F. Environmental effects on linseed (Linum usitatissimum L.) yield and growth of flax at different stand densities. Eur J Agron. 1999;11:267–78.

    Google Scholar 

  141. Lisson SN, Mendham NJ. Agronomic studies of flax (Linum usitatissimum L.) in south- eastern Australia. Aust J Exp Agric. 2000;40:1101–12.

    Google Scholar 

  142. Hassan FU, Leitch MH. Dry matter accumulation in linseed (Linum usitatissimum L.). J Agron Crop Sci-Zeitschrift Fur Acker Und Pflanzenbau. 2001;187:83–7.

    Google Scholar 

  143. Marshall G, Morrison I, Nawolsky K. Studies on the physiology of Linum usitatissimum L.: the application of mathematical growth analysis. Flax: breeding and utilisation. Brussels/Kluwer: G. Marshall; 1989.

    Google Scholar 

  144. Heller K, Baraniecki P, Praczyk M. Fibre flax cultivation in sustainable agriculture. In: Handbook of natural fibres, vol. 1: types, properties and factors affecting breeding and cultivation, Woodhead Publishing in textiles, vol. 118. Oxford/Cambridge/Philadelphia/New Delhi: Woodhead Publishing Limited; 2012. p. 508–31.

    Google Scholar 

  145. Fouilloux G. Breeding flax methods. In: Proceedings of the EEC flax workshop. Brussels; 4–5 May 1988. p. 14–25.

    Google Scholar 

  146. El-Hariri DM, Hassanein MS, El-Sweify AHM. Evaluation of some flax genotypes straw yield, yield components and technological characters. J Nat Fibres. 2004;1(2):1–12.

    Google Scholar 

  147. Mankowski J, Szukala J. The influence of agronomic factors simulating obtaining of homomorphic flax fibre with refined utility features. Nat Fibres Spec Ed. 1998;1:47–55.

    Google Scholar 

  148. Souček J, Blažej D. Linseed harvests parameters depending on the state of cutting mechanism. Res Agr Eng. 2012;58:46–9.

    Google Scholar 

  149. Venturi G, Ammaduci MT, Cremaschi D. Lino da olio, primi resultati del PRisCA. L’Informatore Agrario 1994; 46: 4–6.

    Google Scholar 

  150. FERRA’S Plant Varieties and Seeds Team, (version for publication 2012). Linum usitatissimum L., linseed/flax, an assessment of the risk of adventitious GM presence in UK conventional seed. Sand Huton/York: Food and Environment Research Agency, Department for Environment, Food and Rural Affairs; 2010.

    Google Scholar 

  151. Vyhláška č. 129/2012Sb o podrobnostech uvádění osiva a sadby pěstovaných rostlin do oběhu. V. Zemědělská výroba, MZe.

    Google Scholar 

  152. Diepenbrock W, Iwersen D. Yield development in linseed (Linum usitatissimum L.). Plant Res Dev. 1989;30:104–25.

    Google Scholar 

  153. Turner J. Linseed law. A handbook for growers and advisers. Suffolk: BASF U.K. Ltd; 1987. 356 pp.

    Google Scholar 

  154. Gubbels GH, Kenaschuk EO. Effect of spring seedling residues on the agronomic performance of subsequent flax and barley crops seeded with and without prior tillage. Can J Plant Sci. 1989;69:151–9.

    Google Scholar 

  155. Taylor BR, Morrice LAF. Effects of husbandry practices on the seed yield and oil content of linseed in Northern Scotland. J Sci Food Agric. 1991;57:189–98.

    CAS  Google Scholar 

  156. Freer JB. A development stage key for linseed (Linum usitatissimum L.). Aspects Appl Biol. 1991;28:33–40.

    Google Scholar 

  157. Factfish World Statistics and Data Research. (www.factfish.com). Accessed 9 May 2014.

  158. Weightman R, Kinder D. Review and analysis of breeding and regulation of hemp and flax varieties available for growing in the UK. ADAS Centre for Sustainable Crop Management, final report for Defra. Boxworth/Cambridge; 2005. p. 77.

    Google Scholar 

  159. Ministerstvo zemědělství. Situační a výhledová zpráva – len a konopí, 2011. Těšnov, Praha, Česká republika (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pavelek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavelek, M., Tejklová, E., Bjelková, M. (2015). Flax and Linseed. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_11

Download citation

Publish with us

Policies and ethics