Skip to main content

Historical Context

  • Chapter
  • First Online:
Microglia in Health and Disease

Abstract

The term ‘microglia’ was first introduced into the scientific literature almost a century ago. The various eras of microglia research have not only been defined by the number of reports subsequently generated but, more critically, by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago. Advances in our understanding of microglial origin, forms, and functions have relied fundamentally on parallel developments in immunology. As the ‘neuro-immune’ cells of the brain, microglia are now under the spotlight in various disciplines. This chapter surveys the gradual processes and precipitous events that helped form ideas concerning the developmental origin of microglia and their roles in health and disease. It covers first the dawning phase during which the early pioneers of microglia research discovered cellular entities and already assigned functions to them. Following a recess period, the 1960s brought a renaissance of active interest, with a development of tools and models—and fundamental notions on microglial contributions to central nervous system pathologies. These seminal efforts laid the fundament for the awakening of a sweeping research era beginning with 1980s and being spurred on by a blast of immunological discoveries. Finally, the chapter stresses the advancement of molecular, genetic as well as imaging approaches to the study of microglia with the turn of the millennium, enabling insights into virtually all facets of microglial physiology. Moving forward it is clear that the future holds substantial promise for further discoveries. The next epoch in the history of microglia research has just begun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achúcarro N (1908) Sur la formation de cellules à bâttonnet (Stäbchenzellen) et d’autres elements similaires dans le système nerveux central. Trab Lab Invest Biol Univ Madrid 6:97–122 [In French]

    Google Scholar 

  • Achúcarro N (1909) Cellules allongées et Stäbchenzellen, cellules névrologique et cellules granulo-adipeuses à la corne d’Ammon du lapin. Trab Lab Invest Biol Univ Madrid 7:201–215 [In French]

    Google Scholar 

  • Achúcarro N (1910) Algunos datos relativos a la naturaleza de las células en bastoncito de la corteza cerebral humana obtenidos con el método de Cajal. Trab Lab Invest Biol Univ Madrid 8:8 [In Spanish]

    Google Scholar 

  • Achúcarro N (1911) Neuroglía y elementos intersticiales patológicos del cerebro impregnados por los métodos de reducción de la plata o por sus modificaciones. Trab Lab Invest Biol Univ Madrid 9:161–179 [In Spanish]

    Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    PubMed  CAS  Google Scholar 

  • Aldskogius H (2001) Regulation of microglia—potential drug targets in the CNS. Expert Opin Ther Targets 5:655–668

    PubMed  CAS  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    PubMed  CAS  Google Scholar 

  • Alpers BJ (1930) The reaction of the central nervous system to experimental urea intoxication. Arch Neurol Psychiatry 24:492–508

    CAS  Google Scholar 

  • Andres-Barquin PJ (2002) Santiago Ramón y Cajal and the Spanish school of neurology. Lancet Neurol 1:445–452

    PubMed  Google Scholar 

  • Andrew W, Ashworth CT (1945) The Adendroglia. A new concept of the morphology and reactions of the smaller neuroglial cells. J Comp Neurol 82:101–127

    Google Scholar 

  • Andriezen WL (1893) The neuroglia elements in the human brain. Br Med J 2:227–230

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aschoff L (1924) Reticulo-endothelial system. Lectures on pathology. Hoeber, New York, pp 1–33

    Google Scholar 

  • Bailey P, Hiller G (1924) The interstitial tissues of the central nervous system: a review. J Nerv Ment Dis 59:337–361

    Google Scholar 

  • Banati RB (2002) Visualising microglial activation in vivo. Glia 40:206–217

    PubMed  Google Scholar 

  • Banati RB (2003) Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain. Br Med Bull 65:121–131

    PubMed  Google Scholar 

  • Banati RB, Hoppe D, Gottmann K, Kreutzberg GW, Kettenmann H (1991) A subpopulation of bone marrow-derived macrophage-like cells share a unique ion channel pattern with microglia. J Neurosci Res 30:593–600

    PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreuzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–8

    PubMed  CAS  Google Scholar 

  • Banati RB, Graeber MB (1994) Surveillance, intervention and cytotoxicity: is there a protective role of microglia Dev Neurosci 16:114–27

    PubMed  CAS  Google Scholar 

  • Banati RB, Myers R, Kreutzberg GW (1997) PK (‘peripheral benzodiazepine’)—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26:77–82

    PubMed  CAS  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123:2321–2337

    PubMed  Google Scholar 

  • Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134(Suppl):57–68

    PubMed  Google Scholar 

  • Belezky WK (1931) Die PyridinsodamethodezurImprägnation der Mesoglia (Hortegazellen, Oligodendroglia, Drenagzellen) und Reticuloendothel-zellen (fürGelatin und Celloidinschnitte). Virchows Arch Pathol Anat Physiol Klin Med 282:214–224 [In German]

    Google Scholar 

  • Belezky WK (1932) Über die Histogenese der Mesoglia. Virchows Arch Pathol Anat Physiol Klin Med 284:295–311 [In German]

    Google Scholar 

  • Bevan-Lewis W (1899) Textbook of mental diseases, 2nd edn. Charles Griffin and Company, London

    Google Scholar 

  • Bevan-Lewis W (1906) The neuron theory—fatigue, rest and sleep. J Ment Sci 52:661–673

    Google Scholar 

  • Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘on’ and ‘off’ signals control microglia. Trends Neurosci 30:596–602

    PubMed  CAS  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14

    PubMed  PubMed Central  Google Scholar 

  • Blakemore WF (1975) The ultrastructure of normal and reactive microglia. Acta Neuropathol Suppl 6:273–278

    Google Scholar 

  • Blinzinger K, Hager H (1962) Electron microscope studies on the fine structure of resting and progressive microglia cells in the mammalian brain. Beitr Pathol Anat Allg Pathol 127:173–192 [In German]

    CAS  Google Scholar 

  • Blinzinger K, Kreutzberg H (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85:145–157, (journal was later renamed Cell & Tissue Research) [In English]

    PubMed  CAS  Google Scholar 

  • Bocchini V, Artault JC, Rebel G, Dreyfus H, Massarelli R (1988) Phagocytosis of polystyrene latex beads by rat brain microglia cell cultures is increased by treatment with gangliosides. Dev Neurosci 10:270–276

    PubMed  CAS  Google Scholar 

  • Boggio EM, Lonetti G, Pizzorusso T, Giustetto M (2010) Synaptic determinants of Rett syndrome. Front Synaptic Neurosci 2:28, 11 p

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bolsi D (1936) Il problema della origine della microglia. Riv Patol Nerv Ment 48:1 [In Italian]

    Google Scholar 

  • Booth PL, Thomas WF (1991) Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res 548:163–171

    PubMed  CAS  Google Scholar 

  • Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12:2049–2058

    PubMed  CAS  Google Scholar 

  • Boya J (1975) Contribution to the ultrastructural study of microglia in the cerebral cortex. Acta Anat 92:364–375

    PubMed  CAS  Google Scholar 

  • Boya J, Calvo J, Prado A (1979) The origin of microglial cells. J Anat 129:177–186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bullo J (1945) Contribuciones de la escuela de Cajal sobre histopatologia de la neuroglia y microglia. Arch Histol Norm Patol 2:425–445 [In Spanish]

    Google Scholar 

  • Bustamante M (1982) Nicolás Achúcarro: the man and his work. Arch Neurobiol 45:55–72 [In Spanish]

    Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In vivo measurement of activated microglia in dementia. Lancet 358:461–467

    PubMed  CAS  Google Scholar 

  • Cagnin A, Gerhard A, Banati RB (2002) In vivo imaging of neuroinflammation. Eur Neuropsychopharmacol 12:581–586

    PubMed  CAS  Google Scholar 

  • Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452

    PubMed  CAS  Google Scholar 

  • Cajal SR (1913) Contribución al conocimiento de la neuroglía del cerebro humano. Trab Lab Invest Biol Univ Madrid 11:55–315 [In Spanish]

    Google Scholar 

  • Cajal SR (1920a) Algunas consideraciones sobre la mesoglia de Robertson y Rio-Hortega. Trab Lab Invest Biol Univ Madrid 18:109–127 [In Spanish]

    Google Scholar 

  • Cajal SR (1920b) Una modificación del método de Bielschowsky para la impregnación de la neuroglía común y mesoglía y algunos consejos acerca de la técnica del oro-sublimado. Trab Lab Invest Biol Univ Madrid 18:129–141 [In Spanish]

    Google Scholar 

  • Cajal SR (1925) Contribution a la connaissance de la névroglie cérébrale et cérébelleuse dans la paralysie générale progressive. Avec quelques indications techniques sur l‘imprégnation argentique du tissu nerveux pathologique. Trab Lab Invest Biol Univ Madrid 23:157–216 [In French]

    Google Scholar 

  • Cajal SR, Marañón G, Gasset JO (1968) Nicolás Achúcarro (1880–1918): su vida y su obra. Taurus Ed, Madrid

    Google Scholar 

  • Cammermeyer J (1965a) Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the nouse facial nucleus. Ergeb Anat Entwicklungsgesch 38:1–22 [In German]

    PubMed  CAS  Google Scholar 

  • Cammermeyer J (1965b) Histiocytes juxtavascular mitotic cells and microglia cells during retrograde changes in the facial nucleus of rabbits of varying age. Ergeb Anat Entwicklungsgesch 38:195–229 [In German]

    PubMed  CAS  Google Scholar 

  • Cammermeyer J (1970) The life history of the microglial cell: a light microscopic study. Neurosci Res 3:43–129

    PubMed  CAS  Google Scholar 

  • Cannon DF (1949) Explorer of the human brain: the life of Santiago Ramón y Cajal (1852–1934). H. Schuman, New York

    Google Scholar 

  • Cardona F (1937) Sui quadri iso-patologici della microglia cerebrale umana. Riv Patol Nerv Ment 50:461–472 [In Italian]

    Google Scholar 

  • Carmichael EA (1929) Microglia: an experimental study in rabbits after intracerebral injection of blood. J Neurol Psychopathol 9:209–216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    PubMed  CAS  Google Scholar 

  • Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi J, Ifuku M, Noda M, Guilarte TR (2011) Translocator protein (18kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia 59:219–230

    PubMed  Google Scholar 

  • Cone W (1928) Acute pathologic changes in neuroglia and in microglia. Arch Neurol Psychiatry 20:34–72

    Google Scholar 

  • Costero I (1925) Conocimientos actuales sobre el tercer elemento de los centros nerviosos. Clin Lab 29:386–406 [In Spanish]

    Google Scholar 

  • Costero I (1930a) Studien an Mikrogliazellen (sogenanten Hortegazellen) in Gewebskulturen von Gehirn. Arb Staatinstit Exp Ther Frankf 23:27–37 [In German]

    Google Scholar 

  • Costero I (1930b) Cultivo “in vitro” de microglía. Bol R Soc Esp Hist Nat 30:165–171 [In Spanish]

    Google Scholar 

  • Costero I (1930c) Estudio del comportamiento de la microglía “in vitro”. Mem Real Soc Esp Hist Nat 14:125–127 [In Spanish]

    Google Scholar 

  • Costero I (1931) Experimenteller Nachweis der morphologischen und funktionellen Eigenschaften und des mesodermischen Charakters der Mikroglia. Z Gesamte Neurol Psychiatr 132:371–406 [In German]

    Google Scholar 

  • Costero I (1951) Reaction of cerebral microglia in rheumatism. Gac Med Mex 81:49–70 [In Spanish]

    PubMed  CAS  Google Scholar 

  • Costero I (1952) Contribution to the study of reactions of microglia of the central nervous system in acute rheumatism. Arch Mal Coeur Vaiss 45:143–146 [In French]

    PubMed  CAS  Google Scholar 

  • Creutzfeldt HG, Metz A (1926) Űber Gestalt und Tätigkeit der Hortegazellen bei Pathologischen Vorgängen. Z Gesamte Neurol Psychiatr 106:18–53 [In German]

    Google Scholar 

  • Cuadros MA, Navascués J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173–189

    PubMed  CAS  Google Scholar 

  • Cuadros MA, Navascués J (2001) Early origin and colonization of the developing central nervous system by microglial precursors. Prog Brain Res 132:1–9

    Google Scholar 

  • Czeh M, Gressens P, Kaindl AM (2011) The yin and yang of microglia. Dev Neurosci 33:199–209

    PubMed  CAS  Google Scholar 

  • Dailey ME, Waite M (1999) Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 18:222–230

    PubMed  CAS  Google Scholar 

  • Dalmau I, Vela JM, González B, Finsen B, Castellano B (2003) Dynamics of microglia in the developing rat brain. J Comp Neurol 458:144–157

    PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  • de Haas AH, Boddeke HW, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56:888–894

    PubMed  Google Scholar 

  • del Río-Hortega P (1918) Noticia de un nuevo fácil método para la coloración de la neuroglía y del tejido conectivo. Trab Lab Invest Biol Univ Madrid 15:367–368 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1919) El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo-adiposos). III. Naturaleza probable de la microglía. Bol Soc Esp Biol 69–120 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1919b) Poder fagocitario y movilidad de la microglía. Bol Soc Esp Biol 9:154–166 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1919c) Coloración rápida de tejidos normales y patológicos con carbonato de plata amoniacal. Bol Soc Esp Biol 9:7–14 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1920a) Estudios sobre la neuroglía. La microglíay su transformación en células en bastoncito y cuerpos gránulo-adiposos. Trab Lab Invest Biol Univ Madrid 18:37–82 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1920b) Coloración de tejidos normales y patológicos con carbonato de plata amoniacal. Trab Lab Invest Biol Univ Madrid 18 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1921a) Histogénesis y evolucíon normal, éxodo y distribución regional de la microglía. Mem Real Soc Esp Hist Nat 11:213–268 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1921b) La glía de escasas radiaciones (oligodendroglía). Bol Real Soc Esp Hist Nat 21:63–92 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 483–534

    Google Scholar 

  • del Río-Hortega P (1939) The microglia. The Lancet 233:1023–1026

    Google Scholar 

  • del Río-Hortega P (1943a) El método del carbonato argéntico. Revisión general de sus técnicas y aplicaciones en histología normal y patológica I. Arch Hist Normal Patol 1:165–206 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1943b) El método del carbonato argéntico. Revisión general de sus técnicas y aplicaciones en histología normal y patológica II. Arch Hist Normal Patol 1:329–363 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1944a) El método del carbonato argéntico. Revisión general de sus técnicas y aplicaciones en histología normal y patológica III. Arch Hist Normal Patol 2:231–244 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1944b) El método del carbonato argéntico. Revisión general de sus técnicas y aplicaciones en histología normal y patológica IV. Arch Hist Normal Patol 2:577–604 [In Spanish]

    Google Scholar 

  • del Río-Hortega P (1986) El Maestro y yo. Consejo Superior del Investigaciones Científicas (CSIC), Madrid, 1986 [In Spanish]

    Google Scholar 

  • del Río-Hortega P, Jiménez de Asúa F (1921) Sobre la fagocitosis en los tumores y en otros procesos patológicos. Arch Cardiol Hematol 2:161–220 [In Spanish]

    Google Scholar 

  • del Río-Hortega P, Penfield WG (1927) Cerebral cicatrix. The reaction of neuroglia and microglia to brain wounds. Bull John Hopkins Hosp 41:278–303

    Google Scholar 

  • Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dougherty TF (1944) Studies on the cytogenesis of microglia and their relation to cells of the reticulo-endothelial system. Am J Anat 74:61–97

    Google Scholar 

  • Draheim H, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK (1999) Induction of K+ channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience 89:1379–1390

    PubMed  CAS  Google Scholar 

  • Duke DC, Moran LB, Turkheimer FE, Banati R, Graeber MB (2004) Microglia in culture: what genes do they express? Dev Neurosci 26:30–37

    PubMed  CAS  Google Scholar 

  • Dunning HS, Furth J (1935) Studies on the relation between microglia, histiocytes and monocytes. Am J Pathol 11:895–914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dunning HS, Stevenson L (1934) Microglia-like cells and their reaction following injury to the liver, spleen and kidney. Am J Pathol 10:343–348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eder C, Schilling T, Heinemann U, Haas D, Hailer N, Nitsch R (1999) Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 11:4251–4261

    PubMed  CAS  Google Scholar 

  • Esiri MM, Booss J (1984) Comparison of methods to identify microglial cells and macrophages in the human central nervous system. J Clin Pathol 37:150–156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fain NG (1963) On the method of impregnating microglia in celloidin sections. Arkh Patol 25:52–54 [In Russian]

    PubMed  CAS  Google Scholar 

  • Färber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Rev 48:133–143

    PubMed  Google Scholar 

  • Fernández-Guardiola A (1997) Isaac Costero Tudanca. In: Las Neurociencias en el Exilio Español en México. La Ciencia para Todos 153; Fondo de Cultura Económica (FCE), Mexico [In Spanish]

    Google Scholar 

  • Ferrer D (1973) Microglia (mesoglia or Rio Hortega cells) yesterday and today. Rev Med Univ Navarra 17:145–161 [In Spanish]

    PubMed  CAS  Google Scholar 

  • Field EJ (1955) Observations on the development of microglia together with a note on the influence of cortisone. J Anat 89:201–208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flügel A, Bradl M, Kreutzberg GW, Graeber MB (2001) Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 66:74–82

    PubMed  Google Scholar 

  • Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154:4309–4321

    PubMed  CAS  Google Scholar 

  • Fujita S, Kitamura T (1975) Origin of brain macrophages and the nature of the so-called microglia. Acta Neuropathol Suppl 6:291–296

    CAS  Google Scholar 

  • Fujita S, Tsuchihashi Y, Kitamura T (1981) Origin, morphology and function of the microglia. Prog Clin Biol Res 59A:141–169

    PubMed  CAS  Google Scholar 

  • Fujita H, Tanaka J, Toku K, Tateishi N, Suzuki Y, Matsuda S, Sakanaka M, Maeda N (1996) Effects of GM-CSF and ordinary supplements on the ramification of microglia in culture: a morphometric study. Glia 18:269–281

    PubMed  CAS  Google Scholar 

  • Gallyas F (1963) Silver impregnation method for microglia. Acta Neuropathol 3:206–209

    PubMed  CAS  Google Scholar 

  • Gans A (1923) Del Rio-Hortega’s Derde Element in het centrale zenuwstelsel. Ned Tijdschr Geneeskd 67:1024–1027

    Google Scholar 

  • García-Albea E, Wilder G (2004) Penfield en la Residencia de Estudiantes (Madrid, 1924). Rev Neurol 39:872–878 [In Spanish]

    PubMed  Google Scholar 

  • García-Marín V, García-López P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30:479–487

    PubMed  Google Scholar 

  • Garcia-Segura LM (2002) Cajal and glial cells. Prog Brain Res 136:255–260

    PubMed  Google Scholar 

  • Gehrmann J, Banati RB, Kreutzberg GW (1993) Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 48:189–198

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287

    PubMed  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gill AS, Binder DK (2007) Wilder Penfield, Pio del Rio-Hortega and the discovery of oligodendroglia. Neurosurgery 60:940–948

    PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokham S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45, 14 p

    PubMed  PubMed Central  Google Scholar 

  • Giulian D (1987) Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 18:155–171

    PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ (1985) Peptides released by ameboid microglia regulate astroglial proliferation. J Cell Biol 101:2411–2415

    PubMed  CAS  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterisation of ameboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178

    PubMed  CAS  Google Scholar 

  • Giulian D, Ingeman JE (1988) Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8:4707–4717

    PubMed  CAS  Google Scholar 

  • Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8:709–714

    PubMed  CAS  Google Scholar 

  • Giulian D, Li J, Leara B, Keenen C (1994) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25:227–33

    PubMed  CAS  Google Scholar 

  • Giulian D, Bartel S, Broker J, Li X, Kirkpatrick JB (1995) Cell surface morphology identifies microglia as a distinct class of mononuclear phagocyte. J Neurosci 15:7712–7726

    PubMed  CAS  Google Scholar 

  • Glanzer JG, Enose Y, Wang T, Kadiu I, Gong N, Rozek W, Liu J, Schlautman JD, Ciborowski PS, Thomas MP, Gendelman HE (2007) Genomic and proteomic microglial profiling: pathways for neuroprotective inflammatory responses following nerve fragment clearance and activation. J Neurochem 102:627–645

    PubMed  CAS  Google Scholar 

  • Glees P (1953) Neuroglia: morphology and function. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Glenn JA, Ward SA, Stone CR, Booth PL, Thomas WE (1992) Characterisation of ramified microglial cells: detailed morphology, morphological plasticity and proliferative capability. J Anat 180:109–118

    PubMed  PubMed Central  Google Scholar 

  • Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626

    PubMed  CAS  Google Scholar 

  • Gomez Perdiguero E, Schulz C, Geissmann F (2013) Development and homeostasis of ‘resident’ myeloid cells: the case of the microglia. Glia 61:112–120

    PubMed  Google Scholar 

  • Gonzalez C (1971) El merecido homenaje a Don Pío del Río Hortega. Anal Real Acad Med Cir Valladolid 9:70–73 [In Spanish]

    Google Scholar 

  • Graeber MB (1993) Microglia, macrophages and the blood–brain barrier. Clin Neuropathol 12:296–297

    PubMed  CAS  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    PubMed  CAS  Google Scholar 

  • Graeber MB, Mehraein P (1994) Microglia rod cells. Neuropathol Appl Neurobiol 20:178–18014

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (1990a) Microglia: immune network in the CNS. Brain Pathol 1:2–5

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (1990b) Perivascular microglia defined. Trends Neurosci 13:366

    PubMed  CAS  Google Scholar 

  • Graeber MB, Tetzlaff W, Streit WJ, Kreutzberg GW (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett 85:317–321

    PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ, Büringer D, Sparks DL, Kreutzberg GW (1992) Ultrastructural location of major histocompatibility complex (MHC) class II positive perivascular cells in histologically normal human brain. J Neuropathol Exp Neurobiol 51:303–311

    CAS  Google Scholar 

  • Graeber MB, Bise K, Mehraein P (1993) Synaptic stripping in the human facial nucleus. Acta Neuropathol 86:179–181

    PubMed  CAS  Google Scholar 

  • Graeber MB, López-Redondo F, Ikoma E, Ishikawa M, Imai Y, Nakajima K, Kreutzberg GW, Kohsaka S (1998) The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res 813:241–253

    PubMed  CAS  Google Scholar 

  • Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 3585:3798–3805

    Google Scholar 

  • Greaves DR, Gordon S (2002) Macrophage-specific gene expression: current paradigms and future challenges. Int J Hematol 76:6–15

    PubMed  CAS  Google Scholar 

  • Grenier Y, Ruijs TC, Robitaille Y, Olivier A, Antel JP (1989) Immunohistochemical studies of adult human glial cells. J Neuroimmunol 21:103–115

    PubMed  CAS  Google Scholar 

  • Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61:121–127

    PubMed  Google Scholar 

  • Grinberg YY, Milton JG, Kraig RP (2011) Spreading depression sends microglia on Lévy flights. PLoS One 6:e19294. doi:10.1371/journal.pone.0019294

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME (2002) Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37:229–240

    PubMed  Google Scholar 

  • Haas CA, Donath C, Kreutzberg GW (1993) Differential expression of immediate early genes after transection of the facial nerve. Neuroscience 53:91–99

    PubMed  CAS  Google Scholar 

  • Hafner (1965) refers to the New York-based publishers who reprinted Wilder Penfield’s original (1932) set of three volumes for Cytology and Cellular Pathology of the Nervous system in 1965. 652–653 http://www.worldcat.org/title/cytology-cellular-pathology-of-the-nervous-system/oclc/187412121

  • Hager H (1968) Ultrastructural pathology of the macro- and microglia. Acta Neuropathol Suppl 4:86–97 [In German]

    Google Scholar 

  • Hailer NP, Jarhult JD, Nitsch R (1996) Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 18:319–331

    PubMed  CAS  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    PubMed  Google Scholar 

  • Hanisch UK (2013a) Factors controlling microglial activation. In: Kettenmann H, Ransom B (eds) Neuroglia, 3rd edn. Oxford University Press, New York, pp 614–625, Chapter 48

    Google Scholar 

  • Hanisch UK (2013b) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65, 18 p

    PubMed  PubMed Central  Google Scholar 

  • Hanisch UK (2013c) Proteins in microglial activation—inputs and outputs by subsets. Curr Protein Pept Sci 14:3–15

    PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Roles for neuronally-derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95:10896–10901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    PubMed  PubMed Central  Google Scholar 

  • Hayes GM, Woodroofe MN, Cuzner ML (1988) Characterisation of microglia isolated from adult human and rat brain. J Neuroimmunol 19:177–189

    PubMed  CAS  Google Scholar 

  • Haymaker W, Sánchez-Pérez M (1935) Rio-Hortega’s double silver impregnation technique adapted to the staining of tissue cultures. Science 82:355–356

    PubMed  CAS  Google Scholar 

  • Herrera JM (1953) Studies on the problem of microglia genesis. I. Reaction capacity of the microglia of cadaveric encephalon. Arch Med Panamenos 2:161–182 [In Spanish]

    PubMed  CAS  Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    PubMed  CAS  Google Scholar 

  • Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362

    PubMed  CAS  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    PubMed  CAS  Google Scholar 

  • Hughes V (2012) Microglia: the constant gardeners. Nature 485:570–572

    PubMed  CAS  Google Scholar 

  • Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97:253–257

    PubMed  CAS  Google Scholar 

  • Ibrahim MZ, Khreis Y, Kosahyan DS (1974) The histochemical identification of microglia. J Neurol Sci 22:211–233

    PubMed  CAS  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    PubMed  CAS  Google Scholar 

  • Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Fujimura Y, Pike V, Innis RB, Fujita M (2008) Brain and whole-body imaging in non-human primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. Neuroimage 39:1289–1298

    PubMed  PubMed Central  Google Scholar 

  • Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origins of microglial cells. J Comp Neurol 180:139–163

    PubMed  CAS  Google Scholar 

  • Imamura S (1954) Microglia in gliomas. Folia Pyshciatr Neurol Jpn 8:99–126

    CAS  Google Scholar 

  • Imamura K, Ito M, Suzumura A, Asai J, Takahashi A (1990) Generation and characterisation of monoclonal antibodies against rat microglia and ontogenic distribution of positive cells. Lab Invest 63:853–861

    PubMed  CAS  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol Brain Res 57:1–9

    PubMed  CAS  Google Scholar 

  • Jelliffe SE (1919) Nicolas Achúcarro. Obituary J Nerv Ment Dis 49:271–272

    Google Scholar 

  • Jiménez de Asúa F (1927) Die Mikroglia (Hortegasche Zellen) und das Reticulo-endotheliale System. Z Neurol Psychiatr 109:354–379 [In German]

    Google Scholar 

  • Juba A (1933) Untersuchungen über die Entwicklung der Hortegaschen Mikroglia des Menschen. Arch Psychiatr Nervenkr 101:577–592 [In German]

    Google Scholar 

  • Juba A (1934) Das erste Erscheinen und die Urformen der Hortegaschen Mikroglia im Zentralnervensystem. Arch Psychiatr Nervenkr 102:225–232 [In German]

    Google Scholar 

  • Jufe R (1957) Changes in the microglia of the plexiform ganglion in rabies. Arch Histol Norm Patol 7:51–59 [In Spanish]

    PubMed  CAS  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1985) Transformation of ameboid microglial cells into microglia in the corpus callosum of the postnatal rat brain—an electron microscopical study. Arch Histol Jpn 48:17–25

    PubMed  CAS  Google Scholar 

  • Kaur C, Hao AJ, Wu CH, Ling EA (2001) Origin of microglia. Microsc Res Tech 54:2–9

    PubMed  CAS  Google Scholar 

  • Kershman J (1939) Genesis of microglia in the human brain. Arch Neurol Psychiatr 41:24–50

    Google Scholar 

  • Kettenmann H (1994) Electrophysiological behavior of microglia. Neuropathol Appl Neurobiol 20:177–178

    PubMed  CAS  Google Scholar 

  • Kettenmann H (2006) Triggering the brain’s pathology sensor. Nat Neurosci 9:1463–1464

    PubMed  CAS  Google Scholar 

  • Kettenmann H (2007) Neuroscience: the brain’s garbage men. Nature 446:987–9

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg G (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26:278–287

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Banati R, Walz W (1993) Electrophysiological behavior of microglia. Glia 7:93–101

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    PubMed  CAS  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    PubMed  CAS  Google Scholar 

  • Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–80

    PubMed  CAS  Google Scholar 

  • Kitamura T (1969) Re-examination of the concept of microglia. Shinkei Kenkyu No Shimpo 13:355–364 [In Japanese]

    PubMed  CAS  Google Scholar 

  • Kitamura T (1973) The origin of brain macrophages—some considerations on the microglia theory of del Rio-Hortega. Pathol Int 23:11–26

    CAS  Google Scholar 

  • Kitamura T, Hattori H (1972) Re-examination of the origin, function and morphology of microglia. 3. Role of perivascular cells in relation to macrophages. Shinkei Kenkyu No Shimpo 16:447–451 [In Japanese]

    PubMed  CAS  Google Scholar 

  • Kloss CU, Kreutzberg GW, Raivich G (1997) Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. J Neurosci Res 49:248–254

    PubMed  CAS  Google Scholar 

  • Koenig H (1958) An autoradiographic study of nucleic acid and protein turnover in the mamalian neuraxis. J Biophys Biochem Cytol 4:785–792

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kraśnicka Z, Renhawek K (1969) Morphology and histochemistry of microglia in tissue culture studied in normal and pathological conditions. Neuropatol Pol 7:73–90 [In Polish]

    PubMed  Google Scholar 

  • Kraśnicka Z, Renhawek K (1970) Morphology and histochemistry of microglia cultured in normal and pathological conditions. Pol Med J 9:96–212 [In Polish]

    Google Scholar 

  • Kreutzberg GW (1963) Changes of coenzyme (TPN) diaphorase and TPN-linked dehydrogenase during axonal reaction of the nerve cell. Nature 199:393–394

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1967) Autoradiographic study on incorporation of leucine-H3 in peripheral nerves during regeneration. Experientia 23:33–34

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1968) Autoradiographic studies on perineuronal microgliocytes. Acta Neuropathol Suppl 4:141–145 [In German]

    Google Scholar 

  • Kreutzberg GW (1972) Experimental studies on nerve regenerarion. Fortschr Med 90:910–912 [In German]

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1995) Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45:357–360 [In German]

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW, Barron KD (1978) 5′-Nucleotidase of microglial cells in the facial nucleus during axonal reaction. J Neurocytol 7:601–610

    PubMed  CAS  Google Scholar 

  • Kurobane T (1950) Microglia in gliomas; a contribution to the study of microglia. Folia Psychiatr Neurol Jpn 4:123–131

    PubMed  CAS  Google Scholar 

  • Kurpius D, Wilson N, Fuller L, Hoffman A, Dailey ME (2006) Early activation, motility and homing of neonatal microglia to injured neurons does not require protein synthesis. Glia 54:58–70

    PubMed  Google Scholar 

  • Lassmann H, Hickey WF (1993) Radiation bone marrow chimeras as a tool to study microglia turnover in normal brain and inflammation. Clin Neuropathol 12:284–285

    PubMed  CAS  Google Scholar 

  • Lassmann H, Schmied M, Vass K, Hickey WF (1993) Bone marrow derived elements and resident microglia in brain inflammation. Glia 7:19–24

    PubMed  CAS  Google Scholar 

  • Lauro GM, Babilono D, Buttarelli FR, Starace G, Cocchia D, Ennas MG, Sogos V, Gremo F (1995) Human microglia cultures: a powerful model to study their origin and immunoreactive capacity. Int J Dev Neurosci 13:739–752

    PubMed  CAS  Google Scholar 

  • Lavisse S, Guillermier M, Hérard AS, Petit F, Delahaye M, Van Camp N, Ben Haim L, Lebon V, Remy P, Dollé F, Delzescaux T, Bonvento G, Hantraye P, Escartin C (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32:10809–10818

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    PubMed  CAS  Google Scholar 

  • Lebowich RJ (1934) Phagocytic behavior of interstitial cells of brain parenchyma of adult rabbit toward colloidal solutions and bacteria. Arch Pathol 18:50–71

    CAS  Google Scholar 

  • Lee SC, Liu W, Brosnan CF, Dickson DW (1992) Characterisation of primary human fetal dissociated cultures with an emphasis on microglia. Lab Invest 67:465–476

    PubMed  CAS  Google Scholar 

  • Leong SK, Ling EA (1992) Ameboid and ramified microglia: their interrelationship and response to brain injury. Glia 6:39–47

    PubMed  CAS  Google Scholar 

  • Ling EA (1976a) Electron microscopic identification of ameboid microglia in the spinal cord of newborn rats. Acta Anat 96:600–609

    PubMed  CAS  Google Scholar 

  • Ling EA (1976b) Some aspects of ameboid microglia in the corpus callosum and neighbouring regions of neonatal rats. J Anat 121:29–45

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ling EA (1979) Transformation of monocytes into ameboid microglia in the corpus callosum of postnatal rats, as shown by labelling monocytes by carbon particles. J Anat 128:847–858

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ling EA, Tan CK (1974) Ameboid micriglial cells in the corpus callosum of neonatal rats. Arch Histol Jpn 36:265–280

    PubMed  CAS  Google Scholar 

  • Ling EA, Wong WC (1993) The origin and nature of ramified and ameboid microglia: a historical review and current concepts. Glia 7:9–18

    PubMed  CAS  Google Scholar 

  • Liu W, Brosnan CF, Dickson DW, Lee SC (1994) Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. Am J Pathol 145:48–53

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB (1999) Characterisation of fractalkine in rat brain cells: migratory and activation signals for CX3CR1-expressing microglia. J Immunol 163:1628–1635

    PubMed  CAS  Google Scholar 

  • Malik V (1964) Impregnation of microglia and oligodendroglia in paraffin sections. Cesk Morfol 12:214–219 [In Czech]

    PubMed  CAS  Google Scholar 

  • Maximow AA (1928) The macrophage or histiocytes. In: Cowdry EV (ed) Special cytology, vol 1. Hoeber, New York, pp 427–484

    Google Scholar 

  • Mazzi V (1952) Macrophages and microglia in the brain of teleosts. Arch Ital Anat Embriol 57:330–348 [In Italian]

    PubMed  CAS  Google Scholar 

  • McCarter JC (1940) A silver carbonate staining method for oligodendrocytes and microglia for routine use. Am J Pathol 16:233–235

    PubMed  CAS  PubMed Central  Google Scholar 

  • McGeer PL, McGeer EG (2011) History of innate immunity in neurodegenerative disorders. Front Pharmacol 2:77

    PubMed  PubMed Central  Google Scholar 

  • Meo L (1950) Cerebral changes and microglioblastic reactions in leukemia, with several considerations on the histogenesis of microglia. Riv Anat Patol Oncol 3:1060–1088 [In Italian]

    PubMed  CAS  Google Scholar 

  • Metz A, Spatz H (1924) Die Hortegaschen Zellen (das sogenannte ‘dritte element’) und über ihre funktionelle Bedeutung. Z Neurol Psychiatr 89:138–170 [In German]

    Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    PubMed  CAS  Google Scholar 

  • Mladenov S, Gerebtzoff MA (1967) Histochemical research methods on reactive microglia in the rat brain. C R Séances Soc Biol ses Fil 161:1467–1469

    PubMed  CAS  Google Scholar 

  • Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Rev 44:154–178

    PubMed  Google Scholar 

  • Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber MB (2004) Towards a transcriptome definition of microglial cells. Neurogenetics 5:95–108

    PubMed  CAS  Google Scholar 

  • Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–80

    PubMed  CAS  Google Scholar 

  • Mrak RE (2009) Neuropathology and the neuroinflammation idea. J Alzheimers Dis 18:473–481

    PubMed  Google Scholar 

  • Naoumenko J, Feigin I (1963) A modification for paraffin sections of silver carbonate impregnation for microglia. Acta Neuropathol 3:402–406

    PubMed  CAS  Google Scholar 

  • Nakajima K, Kohsaka S (1993a) Functional roles of microglia in the brain. Neureosci Res 17:187–203

    Google Scholar 

  • Nakajima K, Kohsaka S (1993b) Characterization of brain microglia and the biological significance in the central nervous system. Adv Neurol 60:734–43

    Google Scholar 

  • Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11:141–55

    Google Scholar 

  • Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130:169–75

    Google Scholar 

  • Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4:65–84

    Google Scholar 

  • Neumann H (2001) Control of glial immune function by neurons. Glia 36:191–199

    PubMed  CAS  Google Scholar 

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous system tissue immune homeostasis. J Neuroimmunol 184:92–99

    PubMed  CAS  Google Scholar 

  • Nimmerjahn A (2012) Two-photon imaging of microglia in the mouse cortex in vivo. Cold Spring Harb Protoc 2012(5). pii: pdb.prot069294. doi:10.1101/pdb.prot069294

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  • Obrador S (1975) Penfield and the school of Cajal. Penfield and his relation to Cajal and Rio-Hortega. Rev Esp Otoneurooftalmol Neurocir 33:39–53 [In Spanish]

    PubMed  CAS  Google Scholar 

  • Oehmichen M, Wiethölter H, Greaves MF (1979) Immunological analysis of human microglia: lack of monocytic and lymphoid membrane differentiation antigens. J Neuropathol Exp Neurol 38:99–103

    PubMed  CAS  Google Scholar 

  • Ohsawa K, Kohsaka S (2011) Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia 59:1793–1799

    PubMed  Google Scholar 

  • Olah M, Biber K, Vinet J, Boddeke HW (2011) Microglia phenotype diversity. CNS Neurol Disord Drug Targets 10:108–118

    PubMed  CAS  Google Scholar 

  • Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60:306–321

    PubMed  Google Scholar 

  • Ortíz Picón JM (1971) La obra neurohistológica del doctor Pío del Río Hortega (1882–1945). Arch Neurobiol 34:39–70 [In Spanish]

    Google Scholar 

  • Ortíz Picón JM (1983) Pío del Río Hortega. Un estudio biográfico. Arch Neurobiol 46:209–226 [In Spanish]

    Google Scholar 

  • Palmero JR (2005) Pío del Río Hortega en la Universidad de Valladolid. ARBOR Cien Pensamento Cultura 181:181–197 [In Spanish]

    Google Scholar 

  • Palmero JR, del Río-Hortega J (2004) Pío Del Río-Hortega y la Institucionalización de la ciencia en España. In: Actas VIII Congreso de la Sociedad Española de Historia de las Ciencias y de las Técnicas, pp 161–199 [In Spanish]

    Google Scholar 

  • Paolicelli RC, Gross CT (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 7:77–83

    PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Duman L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    PubMed  CAS  Google Scholar 

  • Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, Tay SS, Ling EA, Dheen ST (2012) Transcriptome analysis of ameboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci 13:64

    PubMed  CAS  PubMed Central  Google Scholar 

  • Penfield W (1924a) Oligodendroglia and its relation to classical neuroglia. Brain 47:430–452

    Google Scholar 

  • Penfield W (1924b) Microglie et son rapport avec la dégénération névrogliale dans un gliome. Trav Lab Rech Biol Univ Madrid 22:277–293 [In French]

    Google Scholar 

  • Penfield W (1925) Microglia and the process of phagocytosis in gliomas. Am J Pathol 1:77–89

    PubMed  CAS  PubMed Central  Google Scholar 

  • Penfield W (1928) A method of staining oligodendroglia and microglia (combined method). Am J Pathol 28:153–157

    Google Scholar 

  • Penfield W (1932) Neuroglia: normal and pathological. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 423–479

    Google Scholar 

  • Penfield W (1977) No man alone. A neurosurgeon’s life. Little, Brown Company, Boston

    Google Scholar 

  • Penfield W, Cone W (1937) Neuroglia and microglia (the metallic methods). In: McClung CE (ed). Paul B. Hoeber, New York, p 489–521.

    Google Scholar 

  • Perry VH (1994) Modulation of microglia phenotype. Neuropathol Appl Neurobiol 20:177

    PubMed  CAS  Google Scholar 

  • Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11:273–277

    PubMed  CAS  Google Scholar 

  • Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2:e00047. doi:10.1042/AN20100024

    PubMed  Google Scholar 

  • Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326

    PubMed  CAS  Google Scholar 

  • Petersen MA, Dailey ME (2004) Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 46:195–206

    PubMed  Google Scholar 

  • Pickering JE, Vogel FS (1956) Demyelinization in the brains of monkeys by means of fast neutrons; pathogenesis of the lesion and comparison with the lesions of multiple sclerosis and Schilder’s disease. J Exp Med 104:435–442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    PubMed  CAS  Google Scholar 

  • Polderman H (1926) Die Entdeckung der Mikroglia und ihre Bedeutung für die Neurogliafrage. Nederland Tijdschr v Geneesk 70:537–549 [In German]

    Google Scholar 

  • Politis M, Su P, Piccini P (2012) Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 3:96

    PubMed  PubMed Central  Google Scholar 

  • Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernández-Klett F, Prass K, Bechmann I, deBoer BA, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361

    Google Scholar 

  • Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK (1999) Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 58:1078–1089

    PubMed  CAS  Google Scholar 

  • Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 13:1227–1235

    Google Scholar 

  • Pruijs WM (1927) Über Mikroglia, ihre Herkunft, Funktion und ihr Verhältnis zu anderen Glialelementen. Z Neurol Psychiatr 108:298–331 [In German]

    Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    Google Scholar 

  • Raivich G, Gehrmann J, Moreno-Floros M, Kreutzberg GW (1993) Microglia: growth factor and mitogen receptors. Clin Neuropathol 12:293–295

    PubMed  CAS  Google Scholar 

  • Rand CW, Courville CB (1932) Histologic changes in the brain in cases of fatal injury to the head. III. Reaction of microglia and oligodendroglia. Arch Neurol Psychiatry 27:605–644

    Google Scholar 

  • Rangroo Thrane V, Thrane AS, Chanag J, Alleluia V, Nagelhus EA, Nedergaard M (2012) Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy. Neuroscience 220:247–255

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialised responses. Annu Rev Immunol 27:119–145

    PubMed  CAS  Google Scholar 

  • Rezaie P (2003) Microglia in the human nervous system during development. Neuroembryology 2:18–31

    Google Scholar 

  • Rezaie P (2007) Microglia: from origins to differentiation, distribution and dynamics. In: Dheen ST, Ling EA (eds) Trends in glial research—basic and applied. Research Signpost, Kerala, pp 1–41

    Google Scholar 

  • Rezaie P, Male D (2002a) Mesogia and microglia. A historical review of the concept of mononuclear phagocytes within the central nervous system. J Hist Neurosci 11:325–374

    PubMed  Google Scholar 

  • Rezaie P, Male D (2002b) Differentiation, ramification and distribution of microglia within the central nervous system examined. Neuroembryology 1:29–43

    Google Scholar 

  • Rezaie P, Cairns NJ, Male DK (1997) Expression of adhesion molecules on human fetal cerebral vessels: relationship to microglial colonisation during development. Dev Brain Res 104:175–189

    CAS  Google Scholar 

  • Rezaie P, Patel K, Male DK (1999) Microglia in the human fetal spinal cord—patterns of distribution, morphology and phenotype. Dev Brain Res 115:71–81

    CAS  Google Scholar 

  • Rezaie P, Trillo-Pazos G, Greenwood J, Everall IP, Male DK (2002) Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis. Exp Cell Res 274:68–82

    PubMed  CAS  Google Scholar 

  • Rezza A (1925) Le cellule di Del Rio Hortega. Quistioni intorno alla nevroglia. Rass Studi Psichiatr 14;307–335 [In Italian]. http://www.cbt.biblioteche.provincia.tn.it/oseegenius/resource?uri=6253037&v=l&dcnr=8

  • Rieske E, Graeber MB, Tetzlaff W, Czlonkowska A, Streit WJ, Kreutzberg GW (1989) Microglia and microglia-derived brain macrophages in culture: generation from axotomized rat facial nuclei, identification and characterisation in vitro. Brain Res 492:1–14

    PubMed  CAS  Google Scholar 

  • Robertson WF (1897) The normal histology and pathology of neuroglia (in relation specially to Mental Diseases). J Ment Sci 43:733–752

    Google Scholar 

  • Robertson WF (1898) The normal histology and pathology of neuroglia (in relation specially to mental diseases). Edinb Hosp Rep 5:240–271

    Google Scholar 

  • Robertson WF (1899) On a new method of obtaining a black reaction in certain tissue-elements of the central nervous system (platinum method). Scottish Med Surg J 4:23–30

    Google Scholar 

  • Robertson WF (1900a) A microscopic demonstration of the normal and pathological histology of mesoglia cells. J Ment Sci (Br J Psychiatr) 46:724

    Google Scholar 

  • Robertson WF (1900b) A textbook of pathology in relation to mental diseases. W.F. Clay, Edinburgh

    Google Scholar 

  • Rosenstiel P, Lucius R, Deuschl G, Sievers J, Wilms H (2001) From theory to therapy: implications from an in vitro model of ramified microglia. Microsc Res Tech 54:18–25

    PubMed  CAS  Google Scholar 

  • Russell DS (1929) Intravital staining of microglia with trypan blue. Am J Pathol 5:451–458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rydberg E (1932) Cerebral injury in new-born children consequent on birth trauma; with an inquiry into the normal and pathological analtomy of the neuroglia. Acta Pathol Microbiol Scand Suppl 10:1–247

    Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    PubMed  CAS  Google Scholar 

  • Sawada M, Itoh Y, Suzumura A, Marunouchi T (1993) Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett 160:131–134

    PubMed  CAS  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamsaki R, Ransohoff RM, Greenberg M, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schaffer K (1926) Über die Hortegasche Mikroglia. Z Anat Entwicklungsgesch 81:715–719 [In German]

    Google Scholar 

  • Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, Nau R, Parsa R, Harris RA, Boddeke HW, Chuang HN, Pukrop T, Wessels JT, Jürgens T, Merkler D, Brück W, Schnaars M, Simons M, Kettenmann H, Hanisch UK (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60:1930–1943

    PubMed  Google Scholar 

  • Schilling T, Nitsch R, Heinemann U, Haas D, Eder C (2001) Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14:463–473

    PubMed  CAS  Google Scholar 

  • Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83:1309–1320

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    PubMed  CAS  Google Scholar 

  • Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW, terMeulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88:7438–7442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shepard JL, Zon LI (2000) Developmental derivation of embryonic and adult macrophages. Curr Opin Hematol 7:3–8

    PubMed  CAS  Google Scholar 

  • Sievers J, Parwaresch R, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12:245–258

    PubMed  CAS  Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–100

    PubMed  CAS  Google Scholar 

  • Skaper SD (2011) Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 10:44–56

    PubMed  CAS  Google Scholar 

  • Somjen JS (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1:2–9

    PubMed  CAS  Google Scholar 

  • Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266

    PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB (1993) Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. Glia 7:68–74

    PubMed  CAS  Google Scholar 

  • Streit WJ, Kreutzberg GW (1987) Lectin binding by resting and reactive microglia. J Neurocytol 16:249–260

    PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1989) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21:117–123

    PubMed  CAS  Google Scholar 

  • Streit WJ, Mrak RE, Griffin SE (2004a) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    PubMed  PubMed Central  Google Scholar 

  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004b) Dystrophic microglia in the aging human brain. Glia 45:208–212

    PubMed  Google Scholar 

  • Suzumura A, Mezitis SG, Gonatas NK, Silberberg DH (1987) MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: induction of Ia antigen expression by gamma-interferon. J Neuroimmunol 15:263–278

    PubMed  CAS  Google Scholar 

  • Suzumura A, Sawada M, Yamamoto H, Marunouchi T (1990) Effects of colony stimulating factors on isolated microglia in vitro. J Neuroimmunol 30:111–120

    PubMed  CAS  Google Scholar 

  • Suzumura A, Marunouchi T, Yamamoto H (1991) Morphological transformation of microglia in vitro. Brain Res 545:301–306

    PubMed  CAS  Google Scholar 

  • Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4:e124

    PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Maeda N (1996) Microglial ramification requires nondiffusible factors derived from astrocytes. Exp Neurol 137:367–375

    PubMed  CAS  Google Scholar 

  • Theele DP, Streit WJ (1993) A chronicle of microglial ontogeny. Glia 7:5–8

    PubMed  CAS  Google Scholar 

  • Timmer AP (1925) Der Anteil der Mikroglia und Makroglia am Aufbau der Senilen Plaques. Z Neurol Psychiatr 98:43–58 [In German]

    Google Scholar 

  • Tremblay M-E (2011) The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol 7:67–76

    PubMed  Google Scholar 

  • Tremblay M-E, Lowery R, Majeewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    PubMed  PubMed Central  Google Scholar 

  • Tremblay M-E, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    PubMed  CAS  Google Scholar 

  • Tsypkin LB (1959) Microglial reaction in senile dementia and the role of the microglia in the structural genesis of senile plaques. Zh Nevropatol Psikhiatr Im SS Korsakova 59:1325–1331 [In Russian]

    CAS  Google Scholar 

  • Turner J (1905) A note concerning mesoglia cells. Rev Neurol Psychiatr 3:773–775

    Google Scholar 

  • Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W (1993) Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant receipients: a Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 52:460–470

    PubMed  CAS  Google Scholar 

  • Vaughn JE, Peters A (1968) A third neuroglial cell type. An electron microscopic study. J Comp Neurol 133:269–288

    PubMed  CAS  Google Scholar 

  • Vazquez-Lopez E (1942) The existence of microglia in the neurohypophysis. J Anat 76:178–186

    PubMed  CAS  PubMed Central  Google Scholar 

  • Veremeyko T, Starossom SC, Weiner HL, Ponomarev ED (2012) Detection of microRNAs in microglia by real-time PCR in normal CNS and during neuroinflammation. J Vis Exp 20165:e4097. doi:10.3791/4097 [Video Journal Article]

  • Visintini F (1931) Sulla presenza di cellule ramificate simili alla microglia, nel cuore, nei muscoli volontari e nella vescica urinaria. Riv Patol Nerv Ment 37:36–47 [In Italian]

    Google Scholar 

  • von Mihálik P (1935) Über die Nervengewebekulturen, mit besonderer Berücksichtigung der Neuronenlehre und der Mikrogliafrage. Arch Exp Zellforsck 17:119–176 [In German]

    Google Scholar 

  • von Sántha K (1932) Untersuchungen über die Entwicklung der Hortegaschen Mikroglia. Arch Psychiatr Nervenkr 96:36 [In German]

    Google Scholar 

  • von Sántha K, Juba A (1933) Weitere Untersuchungen über die Entwicklung der Hortegaschen Mikroglia. Arch Psychiatr Nervenkr 98:598–613 [In German]

    Google Scholar 

  • Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, Dragunow M (2000) PU.1 expression in microglia. J Neuroimmunol 104:109–115

    PubMed  CAS  Google Scholar 

  • Wang Y, Szretter KJ, Vermi W, Gilfillian S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward SA, Ransom PA, Booth PL, Thomas WE (1991) Characterisation of ramified microglia in tissue culture: pinocytosis and motility. J Neurosci Res 29:13–28

    PubMed  CAS  Google Scholar 

  • Wells AQ, Carmichael EA (1930) Microglia: an experimental study by means of tissue culture and vital staining. Brain 53:1–10

    Google Scholar 

  • Williams K, Bar-Or A, Ulvestad E, Olivier A, Antel JP, Yong VW (1992) Biology of adult human microglia in culture: comparisons with peripheral blood monocytes and astrocytes. J Neuropathol Exp Neurol 51:538–549

    PubMed  CAS  Google Scholar 

  • Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36:156–164

    PubMed  CAS  Google Scholar 

  • Wilson D (2005) The early history of tissue culture in Britain: the interwar years. Soc Hist Med 18:225–243

    PubMed  PubMed Central  Google Scholar 

  • Winkler A, de Bedo, Purves-Stewart J, Negro F (1931) Eleventh annual international neurologic assembly—society transactions. Arch Neurol Psychiatr 1931;25:653–666

    Google Scholar 

  • Wolman M (1958) Studies on the impregnation of nervous tissue elements. IV. Mechanism of impregnation of oligodendroglia and microglia. Lab Invest 7:52–57

    PubMed  CAS  Google Scholar 

  • Wu CH, Wen CY, Shieh JH, Ling EA (1992) A quantitative and morphomteric study of the transformation of ameboid microglia into ramified microglia in the developing corpus callosum in rats. J Anat 181:423–430

    PubMed  PubMed Central  Google Scholar 

  • Yasuzumi G, Tsubo I, Sugihara R, Nakai Y (1964) Analysis of the development of Japanese B Encephalitis (JBE) Virus. I. Electron microscope studies of microglia infected with JBE virus. J Ultrastruct Res 11:213–229

    PubMed  CAS  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Wang FW, Yao LL, Hao AJ (2011) Microglia—friend or foe. Front Biosci 3:869–883

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Payam Rezaie Ph.D. or Uwe-Karsten Hanisch Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rezaie, P., Hanisch, UK. (2014). Historical Context. In: Tremblay, MÈ., Sierra, A. (eds) Microglia in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1429-6_2

Download citation

Publish with us

Policies and ethics