Skip to main content

Neurodevelopmental and Neuropsychiatric Disorders

  • Chapter
  • First Online:
Microglia in Health and Disease

Abstract

The etiology of neuropsychiatric disorders such as autism spectrum disorders (ASDs) and schizophrenia remains unclear. However, many aspects of their neuropathology were recently reported to be closely associated with microglial dysfunction. Microglia, which are the major players of innate immunity in the central nervous system, respond rapidly to pathological changes, even minor ones, and contribute directly to neuroinflammation by producing various cytokines and free radicals. Recent studies revealed that microglia become activated over the course of ASDs and schizophrenia, using brain neuroimaging and postmortem analyzes. Recent studies have also shown inhibitory effects of some antipsychotics on the release of inflammatory cytokines and free radicals from activated microglia, causing synaptic and white matter abnormalities as seen in ASDs and schizophrenia postmortem brains. In addition, recent evidence strongly suggests a neurodevelopmental role for microglia in regulating the formation/function of neuronal circuits by their phagocytic activity and structural interactions with synapses. In Rett syndrome (RTT) particularly, microglia become dysfunctional and neurotoxic, thus contributing to abnormal brain development. Populating the brain of RTT mice with wild-type microglia was also found to arrest the disease, indicating an essential role of microglia in regulating the neurodevelopmental trajectory. In summary, emerging evidence indicates that microglia are closely related to the progression and outcome of ASDs and schizophrenia. Understanding microglial pathology may shed new light on the most promising therapeutic strategies for ASDs and schizophrenia, among other neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhondzadeh S, Tabatabaee M, Amini H, Abhari SAA, Abbasi SH, Behnam B (2007) Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 90:179–185

    PubMed  Google Scholar 

  • Amminger GP, Schafer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, Mackinnon A, McGorry PD, Berger GE (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67:146–154

    PubMed  CAS  Google Scholar 

  • Arion D, Unger T, Lewis DA, Levitt P, Mirnics K (2007) Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 62:711–721

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asadabadi M, Mohammadi MR, Ghanizadeh A, Modabbernia A, Ashrafi M, Hassanzadeh E, Forghani S, Akhondzadeh S (2013) Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 225:51–59

    CAS  Google Scholar 

  • Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11:47–55

    PubMed  CAS  Google Scholar 

  • Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271:126–128

    PubMed  CAS  Google Scholar 

  • Behrens MM, Sejnowski TJ (2009) Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology 57:193–200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    PubMed  CAS  Google Scholar 

  • Benavides J, Cornu P, Dennis T, Dubois A, Hauw JJ, MacKenzie ET, Sazdovitch V, Scatton B (1988) Imaging of human brain lesions with an omega 3 site radioligand. Ann Neurol 24:708–712

    PubMed  CAS  Google Scholar 

  • Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9:1059–1071

    PubMed  CAS  Google Scholar 

  • Betancur C, Sakurai T, Buxbaum JD (2009) The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci 32:402–412

    PubMed  CAS  Google Scholar 

  • Beumer W, Drexhage RC, De Wit H, Versnel MA, Drexhage HA, Cohen D (2012) Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology 37:1901–1911

    PubMed  CAS  Google Scholar 

  • Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S (2008) The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 32:42–48

    PubMed  CAS  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14

    PubMed  PubMed Central  Google Scholar 

  • Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, Maier SF, Bilbo SD (2010) Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav Immun 24:329–338

    PubMed  PubMed Central  Google Scholar 

  • Breece E, Paciotti B, Nordahl CW, Ozonoff S, Van de Water JA, Rogers SJ, Amaral D, Ashwood P (2013) Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors. Brain Behav Immun 31:69–75

    PubMed  CAS  Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    PubMed  PubMed Central  Google Scholar 

  • Buntinx M, Moreels M, Vandenabeele F, Lambrichts I, Raus J, Steels P, Stinissen P, Ameloot M (2004) Cytokine-induced cell death in human oligodendroglial cell lines: I Synergistic effects of IFN-gamma and TNF-alpha on apoptosis. J Neurosci Res 76:834–845

    PubMed  CAS  Google Scholar 

  • Cammer W, Zhang H (1999) Maturation of oligodendrocytes is more sensitive to TNF alpha than is survival of precursors and immature oligodendrocytes. J Neuroimmunol 97:37–42

    PubMed  CAS  Google Scholar 

  • Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433

    PubMed  Google Scholar 

  • Cazzullo CL, Sacchetti E, Galluzzo A, Panariello A, Colombo F, Zagliani A, Clerici M (2001) Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res 47:293–298

    PubMed  CAS  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    PubMed  CAS  Google Scholar 

  • Chaudhry IB, Hallak J, Husain N, Minhas F, Stirling J, Richardson P, Dursun S, Dunn G, Deakin B (2012) Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol 26:1185–1193

    PubMed  Google Scholar 

  • Chavez B, Chavez-Brown M, Sopko MA Jr, Rey JA (2007) Atypical antipsychotics in children with pervasive developmental disorders. Paediatr Drugs 9:249–266

    PubMed  Google Scholar 

  • Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36:361–365

    PubMed  Google Scholar 

  • Colton CA (2013) Immune heterogeneity in neuroinflammation: dendritic cells in the brain. J Neuroimmune Pharmacol 8:145–162

    PubMed  Google Scholar 

  • Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, Costa LD, Claudianos C (2014) Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry 19(3):294–301

    PubMed  CAS  Google Scholar 

  • Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropharmacol 10:404–415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, Razak KA, Ethell DW, Ethell IM (2013) Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience 246:186–198

    PubMed  CAS  Google Scholar 

  • Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456

    PubMed  Google Scholar 

  • Dean B, Gibbons AS, Tawadros N, Brooks L, Everall IP, Scarr E (2013) Different changes in cortical tumor necrosis factor-alpha-related pathways in schizophrenia and mood disorders. Mol Psychiatry 18:767–773

    PubMed  CAS  Google Scholar 

  • Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Derecki NC, Cronk JC, Kipnis J (2013) The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol 34:144–150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Devaraj S, Dasu MR, Jialal I (2010) Diabetes is a proinflammatory state: a translational perspective. Expert Rev Endocrinol Metab 5:19–28

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64:61–78

    PubMed  CAS  Google Scholar 

  • Dickerson F, Stallings C, Origoni A, Vaughan C, Khushalani S, Yang SJ, Yolken R (2013) C-reactive protein is elevated in schizophrenia. Schizophr Res 143:198–202

    PubMed  Google Scholar 

  • Dieset I, Hope S, Ueland T, Bjella T, Agartz I, Melle I, Aukrust P, Rossberg JI, Andreassen OA (2012) Cardiovascular risk factors during second generation antipsychotic treatment are associated with increased C-reactive protein. Schizophr Res 140:169–174

    PubMed  Google Scholar 

  • Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:49

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    PubMed  Google Scholar 

  • Drexhage RC, Knijff EM, Padmos RC, van der Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 10:59–76

    PubMed  CAS  Google Scholar 

  • Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS (2006) Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun 20:532–545

    PubMed  CAS  Google Scholar 

  • Ehninger D, Silva AJ (2011) Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends Mol Med 17:78–87

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ellman LM, Susser ES (2009) The promise of epidemiologic studies: neuroimmune mechanisms in the etiologies of brain disorders. Neuron 64:25–27

    PubMed  CAS  Google Scholar 

  • Feldhaus B, Dietzel ID, Heumann R, Berger R (2004) Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig 11:89–96

    PubMed  CAS  Google Scholar 

  • Fellerhoff B, Wank R (2011) Increased prevalence of Chlamydophila DNA in post-mortem brain frontal cortex from patients with schizophrenia. Schizophr Res 129:191–195

    PubMed  Google Scholar 

  • Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18:206–214

    PubMed  CAS  Google Scholar 

  • Fontainhas AM, Wang MH, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6:14

    Google Scholar 

  • Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21:47–59

    PubMed  CAS  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    PubMed  CAS  Google Scholar 

  • Geschwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395

    PubMed  CAS  PubMed Central  Google Scholar 

  • Geschwind DH (2011) Genetics of autism spectrum disorders. Trends Cogn Sci 15:409–416

    PubMed  PubMed Central  Google Scholar 

  • Ghanizadeh A, Moghimi-Sarani E (2013) A randomized double blind placebo controlled clinical trial of N-acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 13:196

    PubMed  PubMed Central  Google Scholar 

  • Ghanizadeh A, Sahraeizadeh A, Berk M (2014) A head-to-head comparison of aripiprazole and risperidone for safety and treating autistic disorders, a randomized double blind clinical trial. Child Psychiatry Hum Dev 45(2):185–192

    PubMed  Google Scholar 

  • Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, Riva MA, Mortensen PB, Feldon J, Schedlowski M, Meyer U (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339:1095–1099

    PubMed  CAS  Google Scholar 

  • Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (2006) Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 81:47–63

    PubMed  Google Scholar 

  • Goines PE, Ashwood P (2013) Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 36:67–81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, Hansen R, Hertz-Picciotto I, Ashwood P, Van de Water J (2011a) Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun 25:514–523

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goines P, Zimmerman A, Ashwood P, Van de Water J (2011b) The immune system, autoimmunity, allergy, and autism spectrum disorders. In: Amaral DG, Dawson G, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press, New York, pp 395–419

    Google Scholar 

  • Gupta S, Aggarwal S, Rashanravan B, Lee T (1998) Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol 85:106–109

    PubMed  CAS  Google Scholar 

  • Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 1:12

    PubMed  PubMed Central  Google Scholar 

  • Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102

    PubMed  Google Scholar 

  • Himmerich H, Schonherr J, Fulda S, Sheldrick AJ, Bauer K, Sack U (2011) Impact of antipsychotics on cytokine production in-vitro. J Psychiatr Res 45:1358–1365

    PubMed  Google Scholar 

  • Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22:1442–1454

    PubMed  CAS  Google Scholar 

  • Hou Y, Wu CF, Yang JY, He X, Bi XL, Yu L, Guo T (2006) Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Prog Neuropsychopharmacol Biol Psychiatry 30:1523–1528

    PubMed  CAS  Google Scholar 

  • Hu S, Peterson PK, Chao CC (1997) Cytokine-mediated neuronal apoptosis. Neurochem Int 30:427–431

    PubMed  CAS  Google Scholar 

  • Hulshoff Pol HE, Kahn RS (2008) What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 34:354–366

    PubMed  PubMed Central  Google Scholar 

  • Iritani S (2007) Neuropathology of schizophrenia: a mini review. Neuropathology 27:604–608

    PubMed  Google Scholar 

  • Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA (2005) Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:846–858

    PubMed  CAS  Google Scholar 

  • Javitt DC (2010) Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 47:4–16

    PubMed  Google Scholar 

  • Jia PL, Wang LL, Meltzer HY, Zhao ZM (2010) Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res 122:38–42

    PubMed  PubMed Central  Google Scholar 

  • Juckel G, Manitz MP, Brune M, Friebe A, Heneka MT, Wolf RJ (2011) Microglial activation in a neuroinflammational animal model of schizophrenia—a pilot study. Schizophr Res 131:96–100

    PubMed  Google Scholar 

  • Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120:170–179

    PubMed  CAS  Google Scholar 

  • Kato T, Monji A, Hashioka S, Kanba S (2007) Risperidone significantly inhibits interferon–gamma-induced microglial activation in vitro. Schizophr Res 92:108–115

    Google Scholar 

  • Kato T, Mizoguchi Y, Monji A, Horikawa H, Suzuki SO, Seki Y, Iwaki T, Hashioka S, Kanba S (2008) Inhibitory effects of aripiprazole on interferon–gamma-induced microglial activation via intracellular Ca2+ regulation in vitro. J Neurochem 106:815–825

    PubMed  CAS  Google Scholar 

  • Kato TA, Monji A, Yasukawa K, Mizoguchi Y, Horikawa H, Seki Y, Hashioka S, Han YH, Kasai M, Sonoda N, Hirata E, Maeda Y, Inoguchi T, Utsumi H, Kanba S (2011) Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia. Schizophr Res 129(2–3):172–182

    Google Scholar 

  • Kelly DL, Vyas G, Richardson CM, Koola M, McMahon RP, Buchanan RW, Wehring HJ (2011) Adjunct minocycline to clozapine treated patients with persistent schizophrenia symptoms. Schizophr Res 133:257–258

    PubMed  Google Scholar 

  • King BH, Lord C (2011) Is schizophrenia on the autism spectrum? Brain Res 1380:34–41

    PubMed  CAS  Google Scholar 

  • Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100:8389–8394

    PubMed  PubMed Central  Google Scholar 

  • Kluge M, Schuld A, Schacht A, Himmerich H, Dalal MA, Wehmeier PM, Hinze-Selch D, Kraus T, Dittmann RW, Pollmacher T (2009) Effects of clozapine and olanzapine on cytokine systems are closely linked to weight gain and drug-induced fever. Psychoneuroendocrinology 34:118–128

    PubMed  CAS  Google Scholar 

  • Knight JG, Menkes DB, Highton J, Adams DD (2007) Rationale for a trial of immunosuppressive therapy in acute schizophrenia. Mol Psychiatry 12:424–431

    PubMed  CAS  Google Scholar 

  • Kowalski J, Labuzek K, Herman ZS (2003) Flupentixol and trifluperidol reduce secretion of tumor necrosis factor-alpha and nitric oxide by rat microglial cells. Neurochem Int 43:173–178

    PubMed  CAS  Google Scholar 

  • Kowalski J, Labuzek K, Herman ZS (2004) Flupentixol and trifluperidol reduce interleukin-1 beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Pol J Pharmacol 56:563–570

    PubMed  CAS  Google Scholar 

  • Kumra S, Ashtari M, Cervellione KL, Henderson I, Kester H, Roofeh D, Wu J, Clarke T, Thaden E, Kane JM, Rhinewine J, Lencz T, Diamond A, Ardekani BA, Szeszko PR (2005) White matter abnormalities in early-onset schizophrenia: a voxel-based diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 44:934–941

    PubMed  Google Scholar 

  • Laan W, Grobbee DE, Selten JP, Heijnen CJ, Kahn RS, Burger H (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71:520–527

    PubMed  CAS  Google Scholar 

  • Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 15:23–30

    PubMed  CAS  Google Scholar 

  • LaSalle JM (2011) A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 6:862–869

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lasalle JM, Yasui DH (2009) Evolving role of MeCP2 in Rett syndrome and autism. Epigenomics 1:119–130

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SH, Kubicki M, Asami T, Seidman LJ, Goldstein JM, Mesholam-Gately RI, McCarley RW, Shenton ME (2013) Extensive white matter abnormalities in patients with first-episode schizophrenia: a Diffusion Tensor Imaging (DTI) study. Schizophr Res 143:231–238

    PubMed  Google Scholar 

  • Leigh MJ, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, Polussa J, Doucet P, Tassone F, Rivera SM, Hessl D, Hagerman RJ (2013) A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J Dev Behav Pediatr 34:147–155

    PubMed  PubMed Central  Google Scholar 

  • Levitt P, Campbell DB (2009) The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest 119:747–754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, Fennig S, Treves I, Kron S (2010) A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 71:138–149

    PubMed  CAS  Google Scholar 

  • Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202

    PubMed  CAS  Google Scholar 

  • Lieberman JA (1999) Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46:729–739

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Javitch JA, Moore H (2008) Cholinergic agonists as novel treatments for schizophrenia: the promise of rational drug development for psychiatry. Am J Psychiatry 165:931–936

    PubMed  Google Scholar 

  • Lin A, Kenis G, Bignotti S, Tura GJB, De Jong R, Bosmans E, Pioli R, Altamura C, Scharpe S, Maes M (1998) The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 32:9–15

    PubMed  CAS  Google Scholar 

  • Lu XH, Dwyer DS (2005) Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 27:43–64

    PubMed  CAS  Google Scholar 

  • Lu DY, Tsao YY, Leung YM, Su KP (2010) Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: implications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology 35:2238–2248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lugnegard T, Hallerback MU, Hjarthag F, Gillberg C (2013) Social cognition impairments in Asperger syndrome and schizophrenia. Schizophr Res 143:277–284

    PubMed  Google Scholar 

  • Lynch MA, Mills KH (2012) Immunology meets neuroscience—opportunities for immune intervention in neurodegenerative diseases. Brain Behav Immun 26:1–10

    PubMed  CAS  Google Scholar 

  • MacDowell KS, Garcia-Bueno B, Madrigal JL, Parellada M, Arango C, Mico JA, Leza JC (2013) Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol 16:121–135

    PubMed  CAS  Google Scholar 

  • Maezawa I, Jin LW (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 30:5346–5356

    PubMed  CAS  Google Scholar 

  • Maezawa I, Calafiore M, Wulff H, Jin LW (2011) Does microglial dysfunction play a role in autism and Rett syndrome? Neuron Glia Biol 7:85–97

    PubMed  Google Scholar 

  • Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    PubMed  CAS  Google Scholar 

  • McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, Arnold LE, Lindsay R, Nash P, Hollway J, McDougle CJ, Posey D, Swiezy N, Kohn A, Scahill L, Martin A, Koenig K, Volkmar F, Carroll D, Lancor A, Tierney E, Ghuman J, Gonzalez NM, Grados M, Vitiello B, Ritz L, Davies M, Robinson J, McMahon D (2002) Risperidone in children with autism and serious behavioral problems. N Engl J Med 347:314–321

    PubMed  CAS  Google Scholar 

  • McCullumsmith RE, Gupta D, Beneyto M, Kreger E, Haroutunian V, Davis KL, Meador-Woodruff JH (2007) Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr Res 90:15–27

    PubMed  PubMed Central  Google Scholar 

  • McDougle CJ, Stigler KA, Erickson CA, Posey DJ (2008) Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. J Clin Psychiatry 69(Suppl 4):15–20

    PubMed  CAS  Google Scholar 

  • McKeith IG (2006) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 9:417–423

    PubMed  Google Scholar 

  • Medina S, Martinez M, Hernanz A (2002) Antioxidants inhibit the human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1–42. Free Radic Res 36:1179–1184

    PubMed  CAS  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  • Meyer U (2011) Anti-inflammatory signaling in schizophrenia. Brain Behav Immun 25:1507–1518

    PubMed  CAS  Google Scholar 

  • Meyer JM, Stahl SM (2009) The metabolic syndrome and schizophrenia. Acta Psychiatr Scand 119:4–14

    PubMed  CAS  Google Scholar 

  • Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A (2013) Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 73:993–999

    PubMed  CAS  Google Scholar 

  • Minshew NJ, Keller TA (2010) The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23:124–130

    PubMed  PubMed Central  Google Scholar 

  • Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255

    PubMed  CAS  Google Scholar 

  • Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J (2007) Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:304–307

    PubMed  CAS  Google Scholar 

  • Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J (2008) Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol 31:287–292

    PubMed  CAS  Google Scholar 

  • Mizoguchi Y, Monji A, Kato T, Seki Y, Gotoh L, Horikawa H, Suzuki SO, Iwaki T, Yonaha M, Hashioka S, Kanba S (2009) Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J Immunol 183:7778–7786

    PubMed  CAS  Google Scholar 

  • Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376

    PubMed  Google Scholar 

  • Muller N, Riedel M, Schwarz MJ, Engel RR (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255:149–151

    PubMed  Google Scholar 

  • Muller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M, Moller HJ, Klauss V, Schwarz MJ, Riedel M (2010) Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 121:118–124

    PubMed  Google Scholar 

  • Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM (2006) Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1:e1–e11

    PubMed  PubMed Central  Google Scholar 

  • Nakki R, Koistinaho J, Sharp FR, Sagar SM (1995) Cerebellar toxicity of phencyclidine. J Neurosci 15:2097–2108

    PubMed  CAS  Google Scholar 

  • Nakki R, Nickolenko J, Chang J, Sagar SM, Sharp FR (1996) Haloperidol prevents ketamine- and phencyclidine-induced HSP70 protein expression but not microglial activation. Exp Neurol 137:234–241

    PubMed  CAS  Google Scholar 

  • Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, Thomas EA (2008) Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 1239:235–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nawa H, Takei N (2006) Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 56:2–13

    PubMed  CAS  Google Scholar 

  • Nielsen J, Skadhede S, Correll CU (2010) Antipsychotics associated with the development of type 2 diabetes in antipsychotic-naive schizophrenia patients. Neuropsychopharmacology 35:1997–2004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Owen R, Sikich L, Marcus RN, Corey-Lisle P, Manos G, McQuade RD, Carson WH, Findling RL (2009) Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics 124:1533–1540

    PubMed  Google Scholar 

  • Palluy O, Rigaud M (1996) Nitric oxide induces cultured cortical neuron apoptosis. Neurosci Lett 208:1–4

    PubMed  CAS  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    PubMed  CAS  Google Scholar 

  • Pardo CA, Buckley A, Thurm A, Lee LC, Azhagiri A, Neville DM, Swedo SE (2013) A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord 5:9

    PubMed  PubMed Central  Google Scholar 

  • Paribello C, Tao L, Folino A, Berry-Kravis E, Tranfaglia M, Ethell IM, Ethell DW (2010) Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol 10:91

    PubMed  PubMed Central  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perez-Neri I, Ramirez-Bermudez J, Montes S, Rios C (2006) Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res 31:1279–1294

    PubMed  CAS  Google Scholar 

  • Pickett J, London E (2005) The neuropathology of autism: a review. J Neuropathol Exp Neurol 64:925–935

    PubMed  Google Scholar 

  • Pike VW, Halldin C, Crouzel C, Barre L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status. Nucl Med Biol 20:503–525

    PubMed  CAS  Google Scholar 

  • Politte LC, McDougle CJ (2014) Atypical antipsychotics in the treatment of children and adolescents with pervasive developmental disorders. Psychopharmacology (Berl) 231(6):1023–1036

    CAS  Google Scholar 

  • Polsek D, Jagatic T, Cepanec M, Hof PR, Simic G (2011) Recent developments in neuropathology of autism spectrum disorders. Transl Neurosci 2:256–264

    PubMed  PubMed Central  Google Scholar 

  • Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808

    PubMed  CAS  Google Scholar 

  • Powell SB, Sejnowski TJ, Behrens MM (2012) Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 62:1322–1331

    PubMed  CAS  PubMed Central  Google Scholar 

  • Price G, Cercignani M, Bagary MS, Barnes TR, Barker GJ, Joyce EM, Ron MA (2006) A volumetric MRI and magnetization transfer imaging follow-up study of patients with first-episode schizophrenia. Schizophr Res 87:100–108

    PubMed  Google Scholar 

  • Radewicz K, Garey LJ, Gentleman SM, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150

    PubMed  CAS  Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    PubMed  CAS  Google Scholar 

  • Rice C (2009) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006 MMWR. Surveillance Summaries, pp 1–20

    Google Scholar 

  • Roberts RC, Roche JK, Conley RR (2005) Synaptic differences in the postmortem striatum of subjects with schizophrenia: a stereological ultrastructural analysis. Synapse 56:185–197

    PubMed  CAS  Google Scholar 

  • Sahin M (2012) Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr Opin Neurobiol 22:895–901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW (2007) Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64:521–529

    PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause KH (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384–392

    PubMed  CAS  Google Scholar 

  • Schlosser RG, Nenadic I, Wagner G, Gullmar D, von Consbruch K, Kohler S, Schultz CC, Koch K, Fitzek C, Matthews PM, Reichenbach JR, Sauer H (2007) White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr Res 89:1–11

    PubMed  Google Scholar 

  • Schmitt A, Bertsch T, Henning U, Tost H, Klimke A, Henn FA, Falkai P (2005) Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr Res 80:305–313

    PubMed  Google Scholar 

  • Schnieder TP, Dwork AJ (2011) Searching for neuropathology: gliosis in schizophrenia. Biol Psychiatry 69:134–139

    PubMed  PubMed Central  Google Scholar 

  • Shang YC, Chong ZZ, Wang SH, Maiese K (2013) Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 10:29–38

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shepherd GM, Katz DM (2011) Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 21:827–833

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26:3103–3117

    PubMed  CAS  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141:314–327

    PubMed  CAS  Google Scholar 

  • Soderlund J, Schroder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H, Erhardt S, Engberg G (2009) Activation of brain interleukin-1 beta in schizophrenia. Mol Psychiatry 14:1069–1071

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sommer IE, de Witte L, Begemann M, Kahn RS (2012) Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 73:414–419

    PubMed  CAS  Google Scholar 

  • Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Mason G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA, Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Mason G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B (2006) Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112:305–316

    PubMed  CAS  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059

    PubMed  CAS  Google Scholar 

  • Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33:303–307

    PubMed  CAS  Google Scholar 

  • Sugranyes G, Kyriakopoulos M, Corrigall R, Taylor E, Frangou S (2011) Autism spectrum disorders and schizophrenia: meta-analysis of the neural correlates of social cognition. PLoS One 6:e25322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sunico CR, Portillo F, Gonzalez-Forero D, Moreno-Lopez B (2005) Nitric-oxide-directed synaptic remodeling in the adult mammal CNS. J Neurosci 25:1448–1458

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andra M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y (2006) Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83:1461–1470

    PubMed  CAS  Google Scholar 

  • Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, Yoshihara Y, Omata K, Matsumoto K, Tsuchiya KJ, Iwata Y, Tsujii M, Sugiyama T, Mori N (2013) Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70:49–58

    PubMed  Google Scholar 

  • Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950

    PubMed  CAS  Google Scholar 

  • Taliou A, Zintzaras E, Lykouras L, Francis K (2013) An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther 35:592–602

    PubMed  CAS  Google Scholar 

  • Theoharides TC (2013) Is a subtype of Autism an allergy of the brain? Clin Ther 35:584–591

    PubMed  CAS  Google Scholar 

  • Theoharides TC, Asadi S, Panagiotidou S (2012) A case series of a luteolin formulation (Neuroprotek (R)) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 25:317–323

    PubMed  CAS  Google Scholar 

  • Theoharides TC, Asadi S, Patel AB (2013) Focal brain inflammation and autism. J Neuroinflammation 10:46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    PubMed  PubMed Central  Google Scholar 

  • Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24:1058–1068

    PubMed  CAS  Google Scholar 

  • Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67:269–275

    PubMed  Google Scholar 

  • Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD (2007) The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 10:537–545

    PubMed  CAS  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008a) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[C-11]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822

    PubMed  Google Scholar 

  • van Berckel BNM, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008b) Microglia activation in recent onset schizophrenia: a quantitative (R)-[C-11]PK11195 study. Neuroimage 41:T119–T119

    Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    PubMed  CAS  Google Scholar 

  • Vismara LA, Rogers SJ (2010) Behavioral treatments in autism spectrum disorder: what do we know? Annu Rev Clin Psychol 6(6):447–468

    PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    PubMed  CAS  Google Scholar 

  • Wang HS, Doering LC (2013) Reversing autism by targeting downstream mTOR signaling. Front Cell Neurosci 7:28

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Cheung C, Deng W, Li M, Huang C, Ma X, Wang Y, Jiang L, Sham PC, Collier DA, Gong Q, Chua SE, McAlonan GM, Li T (2013) White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychol Med 43:2301–2309

    PubMed  CAS  Google Scholar 

  • Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8:592–610

    PubMed  CAS  Google Scholar 

  • Williams SC (2012) Genetics: searching for answers. Nature 491:S4–S6

    PubMed  CAS  Google Scholar 

  • Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J (2009) Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 23:64–74

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF (2011) β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31:6277–6288

    PubMed  CAS  PubMed Central  Google Scholar 

  • Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, Clark CM, DeCarli CS, Jagust WJ, Leverenz JB, Peskind ER, Turner RS, Zamrini EY, Heidebrink JL, Burke JR, DeKosky ST, Farlow MR, Gabel MJ, Higdon R, Kawas CH, Koeppe RA, Lipton AM, Foster NL (2011) Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol 68:329–337

    PubMed  PubMed Central  Google Scholar 

  • Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C (2003) Prevalence of autism in a US metropolitan area. JAMA 289:49–55

    PubMed  Google Scholar 

  • Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E (2013) Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 162B:327–366

    PubMed  Google Scholar 

  • Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC (2004) Changes in serum interleukin-2,-6, and-8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry 65:940–947

    PubMed  CAS  Google Scholar 

  • Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201

    PubMed  Google Scholar 

  • Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302:826–830

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Monji M.D., Ph.D. or Lee-Way Jin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Monji, A., Maezawa, I., Mizoguchi, Y., Kato, T.A., Jin, LW. (2014). Neurodevelopmental and Neuropsychiatric Disorders. In: Tremblay, MÈ., Sierra, A. (eds) Microglia in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1429-6_14

Download citation

Publish with us

Policies and ethics