Skip to main content

Extrasynaptic GABAA Receptors and Tonic Inhibition in Spinal Cord

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

Abstract

γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult central nervous system (CNS), exerts its physiological effects by acting on ligand-gated chloride-permeable channels termed GABAA receptors (GABAAR). The activation of these receptors produces two different types of inhibition: fast and tonic, mediated by synaptic and extrasynaptic GABAARs, respectively. The molecular conformation of the extrasynaptic GABAA receptors and the tonic inhibitory current they generate have been characterized in different brain structures, and their relevance in controlling neuronal excitability has been also demonstrated. Likewise, a role for these receptors has been suggested in a variety of neurological disorders such as schizophrenia, epilepsy, and Parkinson disease. In the spinal cord, the characterization of these receptors has initiated with the study of their relationship with motor control, chronic pain and anesthesia. This chapter highlights past and present developments in the field of extrasynaptic GABAA receptors and emphasizes their subunit composition, distribution, and physiological role in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez FJ (1998) Anatomical basis for presynaptic inhibition of primary sensory fibers. In: Rudomin P, Romo R, Mendell LM (eds) Presynaptic inhibition and neural control. Oxford University Press, New York, pp 13–49

    Google Scholar 

  • Alvarez FJ, Taylor-Blake B, Fyffe RE, De Blas AL, Light AR (1996) Distribution of immunoreactivity for the beta 2 and beta 3 subunits of the GABAA receptor in the mammalian spinal cord. J Comp Neurol 365:392–412

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans FJ, Gamiño SM, Giraldez F, Noguerón I (1988) Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes. J Physiol 406:225–246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alvarez-Leefmans FJ, Nani A, Márquez S (1998) Chloride transport, osmotic balance, and presynaptic inhibition. In: Rudomin P, Romo R, Mendell LM (eds) Presynaptic inhibition and neural control. Oxford University Press, New York, pp 50–79

    Google Scholar 

  • Ataka T, Gu JG (2006) Relationship between tonic inhibitory currents and phasic inhibitory activity in the spinal cord lamina II region of adult mice. Mol Pain 2:36

    PubMed  PubMed Central  Google Scholar 

  • Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M, Woolf CJ (2003) Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 24:818–830

    PubMed  CAS  Google Scholar 

  • Bautista W, Aguilar J, Loeza-Alcocer JE, Delgado-Lezama R (2010) Pre- and postsynaptic modulation of monosynaptic reflex by GABAA receptors on turtle spinal cord. J Physiol 588:2621–2631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bertrand S, Cazalets JR (1998) GABAA and GABAB modulation of synaptic transmission between L1-L2 locomotor network and the motoneurons in the newborn rat isolated spinal cord. Ann NY Acad Sci 16:470–471

    Google Scholar 

  • Bohlhalter S, Weinmann O, Mohler H, Fritschy JM (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16:283–297

    PubMed  CAS  Google Scholar 

  • Bonin RP, Labrakakis C, Eng DG, Whissell PD, De Koninck Y, Orser BA (2011) Pharmacological enhancement of δ-subunit-containing GABAA receptors that generate a tonic inhibitory conductance in spinal neurons attenuates acute nociception in mice. Pain 152:1317–1326

    PubMed  CAS  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    PubMed  CAS  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73:23–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Cull-Candy S, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497:753–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carlton SM, Zhou S, Coggeshall RE (1999) Peripheral GABAA receptors: evidence for peripheral primary afferent depolarization. Neuroscience 93:713–722

    PubMed  CAS  Google Scholar 

  • Carr RW, Sittl R, Fleckenstein J, Grafe P (2010) GABA increases electrical excitability in a subset of human unmyelinated peripheral axons. PLoS ONE 5:e8780

    PubMed  PubMed Central  Google Scholar 

  • Castro A, Aguilar J, Andrés C, Felix R, Delgado-Lezama R (2011a) GABAA receptors mediate motoneuron tonic inhibition in the turtle spinal cord. Neuroscience 192:74–80

    CAS  Google Scholar 

  • Castro A, Aguilar J, González-Ramírez R, Loeza-Alcocer E, Canto-Bustos M, Felix R, Delgado-Lezama R (2011b) Tonic inhibition in spinal ventral horn interneurons mediated by α5 subunit-containing GABAA receptors. Biochem Biophys Res Commun 412:26–31

    CAS  Google Scholar 

  • Cazalets JR, Sqalli-Houssaini Y, Clarac F (1994) GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J Physiol 474:173–181

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cervero F, Laird JM (1996) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68:13–23

    PubMed  CAS  Google Scholar 

  • Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    PubMed  CAS  Google Scholar 

  • Chub N, O’Donovan MJ (2001) Post-episode depression of GABAergic tranmission in spinal neurons of the chick embryo. J Neurophysiol 85:2166–2176

    PubMed  CAS  Google Scholar 

  • Cowley KC, Schmidt BJ (1995) Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions Turing rhythmic motor activity in the in vitro neontal rat spinal cord. J Neurophysiol 74:1109–1117

    PubMed  CAS  Google Scholar 

  • Curtis DR (1969) The pharmacology of spinal postsynaptic inhibition. Prog Brain Res 31:171–189

    PubMed  CAS  Google Scholar 

  • Curtis DR, Malik R (1984) The effect of GABA on lumbar terminations of rubrospinal neurons in the cat spinal cord. Proc R Soc Lond B Biol Sci 223:25–33

    PubMed  CAS  Google Scholar 

  • Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by gamma-amino-n-butyric acid and beta-alanine. J Physiol 146:185–203

    PubMed  CAS  PubMed Central  Google Scholar 

  • Curtis DR, Lodge D, Brand SJ (1977) GABA and spinal afferent terminal excitability in the cat. Brain Res 130:360–363

    PubMed  CAS  Google Scholar 

  • Curtis DR, Wilson VJ, Malik R (1984) The effect of GABA on the terminations of vestibulospinal neurons in the cat spinal cord. Brain Res 295:372–375

    PubMed  CAS  Google Scholar 

  • Curtis DR, Gynther BD, Beattie DT, Lacey G (1995) An in vivo electrophysiological investigation of group Ia afferent fibres and ventral horn terminations in the cat spinal cord. Exp Brain Res 106:403–417

    PubMed  CAS  Google Scholar 

  • Delgado-Lezama R, Aguilar J, Cueva-Rolón R (2004) Synaptic strength between motoneurons and terminals of the dorsolateral funiculus is regulated by GABA receptors in the turtle spinal cord. J Neurophysiol 91:40–47

    PubMed  CAS  Google Scholar 

  • Désarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol 81:327–333

    PubMed  PubMed Central  Google Scholar 

  • Deschenes M, Feltz P, Lamour Y (1976) A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res 118:486–493

    PubMed  CAS  Google Scholar 

  • Eaton MJ, Martinez MA, Karmally S (1999) A single intrathecal injection of GABA permanently reverses neuropathic pain after nerve injury. Brain Res 835(2):334–339

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) Presynaptic Inhibition in the spinal cord. Prog Brain Res 12:65–91

    PubMed  CAS  Google Scholar 

  • Eccles JC, Schmidt R, Willis WD (1963) Pharmacological studies on presynaptic inhibition. J Physiol 168:500–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Evans AK, Lowry CA (2007) Pharmacology of the β-carboline FG-7142, a partial inverse agonist at the benzodiazepine allosteric site of the GABAA receptor: neurochemical, neurophysiological, and behavioral effects. CNS Drug Rev 13:475–501

    PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    PubMed  CAS  Google Scholar 

  • Fitzgerald M, Woolf CJ (1981) Effects of cutaneous nerve and intraspinal conditioning of C-fiber afferent terminal excitability in decerebrate spinal rats. J Physiol 318:25–39

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frank K, Fourtes MGF (1957) Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed Proc 16:39–40

    Google Scholar 

  • Fritschy JM, Benke D, Mertens S, Oertel WH, Bachi T, Möhler H (1992) Five subtypes of type A gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc Natl Acad Sci U S A 89:6726–6730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    PubMed  CAS  Google Scholar 

  • Furuyama T, Sato M, Sato K, Araki T, Inagaki S, Takagi H, Tohyama M (1992) Co-expression of glycine receptor beta subunit and GABAA receptor gamma subunit mRNA in the rat dorsal root ganglion cells. Brain Res Mol Brain Res 12:335–338

    PubMed  CAS  Google Scholar 

  • Gao H, Smith BN (2010) Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol 103:904–914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao BX, Stricker C, Ziskind-Conhaim L (2001) Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks. J Neurophysiol 86:492–502

    PubMed  CAS  Google Scholar 

  • Geiman EJ, Zheng W, Fritschy JM, Alvarez FJ (2002) Glycine and GABAA receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. J Comp Neurol 444:275–289

    PubMed  CAS  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    PubMed  CAS  Google Scholar 

  • Grasshoff C, Netzhammer N, Schweizer J, Antkowiak B, Hentschke H (2008) Depression of spinal network activity by thiopental: shift from phasic to tonic GABAA receptor-mediated inhibition. Neuropharmacology 55:793–802

    PubMed  CAS  Google Scholar 

  • Griebel G, Perrault G, Simiand J, Cohen C, Granger P, Decobert M, Françon D, Avenet P, Depoortere H, Tan S, Oblin A, Schoemaker H, Evanno Y, Sevrin M, George P, Scatton B (2001) SL651498: an anxioselective compound with functional selectivity for a2- and a3-containing g-aminobutyric acid A (GABAA) receptors. J Pharmacol Exp Ther 298:753–768

    PubMed  CAS  Google Scholar 

  • Griebel G, Perrault G, Simiand J, Cohen C, Granger P, Depoortere H, Françon D, Avenet P, Schoemaker H, Evanno Y, Sevrin M, George P, Scatton B (2003) SL651498, a GABAA receptor agonist with subtype-seletive efficacy, as a potential treatment for generalized anxiety disorder and muscle spasm. CNS Drug Rev 9:3–20

    PubMed  CAS  Google Scholar 

  • Grognet A, Hertz F, DeFeudis FV (1983) Comparison of the analgesic actions of THIP and morphine. Gen. Pharmacol 14:585–589

    CAS  Google Scholar 

  • Gutiérrez A, Khan ZU, De Blas AL (1996) Immunocytochemical localization of the alpha 6 subunit of the gamma-aminobutyric acidA receptor in the rat nervous system. J Comp Neurol 365:504–510

    PubMed  Google Scholar 

  • Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

    PubMed  CAS  Google Scholar 

  • Hammond DL, Drower EJ (1984) Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol 103:121–125

    PubMed  CAS  Google Scholar 

  • Han SM, Youn DH (2008) GABAA receptor-mediated tonic currents in substantia gelatinosa neurons of rat spinal trigeminal nucleus pars caudalis. Neurosci Lett 441:296–301

    PubMed  CAS  Google Scholar 

  • Hugel H, Ellershaw JE, Dickman A (2003) Clonazepam as an adjuvant analgesic in patients with cancerrelated neuropathic pain. J Pain Symptom Manag 26:1073–1074

    Google Scholar 

  • Kaneko M, Hammond DL (1997) Role of spinal gamma-aminobutyric acidA receptors in formalin-induced nociception in the rat. J Pharmacol Exp Ther 282:928–938

    PubMed  CAS  Google Scholar 

  • Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Möhler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451:330–334

    PubMed  CAS  Google Scholar 

  • Knabl J, Zeilhofer UB, Crestani F, Rudolph U, Zeilhofer HU (2009) Genuine antihyperalgesia by systemic diazepam revealed by experiments in GABAA receptor point-mutated mice. Pain 141:233–238

    PubMed  CAS  Google Scholar 

  • Kohno T, Wakai A, Ataka T, Ikoma M, Yamakura T, Baba H (2006) Actions of midazolam on excitatory transmission in dorsal horn neurons of adult rat spinal cord. Anesthesiology 104:338–343

    PubMed  CAS  Google Scholar 

  • Kontinen VK, Dickenson AH (2000) Effects of midazolam in the spinal nerve ligation model of neuropathic pain in rats. Pain 85:425–431

    PubMed  CAS  Google Scholar 

  • Korpi ER, Kuner T, Seeburg PH, Lüddens H (1995) Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Mol Pharmacol 47:283–289

    PubMed  CAS  Google Scholar 

  • Kremer E, Lev-Tov A (1997) Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J Neurophysiol 77:1155–1170

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Ruiz A, Rusakov DM, Scott R, Semyanov A, Walker MC (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33–46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lam FY, Ferrell WR (1989a) Capsaicin suppresses substance P-induced joint inflammation in the rat. Neurosci Lett 105:155–158

    CAS  Google Scholar 

  • Lam FY, Ferrell WR (1989b) Inhibition of carrageenan induced inflammation in the rat knee joint by substance P antagonist. Ann Rheum Dis 48:928–932

    CAS  Google Scholar 

  • Levy RA (1975) The effect of intravenously administered gamma-aminobutyric acid on afferent fiber polarization. Brain Res 92:21–34

    PubMed  CAS  Google Scholar 

  • Lin Q, Zou X, Willis WD (2000) Aδ and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 84:2695–2698

    PubMed  CAS  Google Scholar 

  • Lisney SJ (1979) Evidence for primary afferent depolarization of single tooth-pulp afferents in the cat. J Physiol 288:437–447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loeza-Alcocer J, Aguilar J, González-Ramírez R, Felix R, Delgado-Lezama R (2010) Modulation of the dorsal root and the monosynaptic reflex by high affinity α5 subunit-containing GABAA receptors in the turtle spinal cord. Annual Meeting of the Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Loomis CW, Khandwala H, Osmond G, Hefferan MP (2001) Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: An isobolographic analysis. J Pharmacol Exp Ther 296:756–761

    PubMed  CAS  Google Scholar 

  • Ma W, Saunders PA, Somogyi R, Poulter MO, Barker JL (1993) Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J Comp Neurol 338:337–359

    PubMed  CAS  Google Scholar 

  • Maeda A, Katafuchi T, Oba Y, Shiokawa H, Yoshimura M (2010) Enhancement of GABAergic tonic currents by midazolam and noradrenaline in rat substantia gelatinosa neurons in vitro. Anesthesiology 113:429–437

    PubMed  CAS  Google Scholar 

  • Malan TP, Heriberto HP, Poerreca F (2002) Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96:1161–1167

    PubMed  CAS  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    PubMed  CAS  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979

    PubMed  CAS  Google Scholar 

  • Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurons: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci 27:569–575

    PubMed  CAS  Google Scholar 

  • Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300:2–8

    PubMed  Google Scholar 

  • Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ (2002) Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 22:6724–6731

    PubMed  CAS  Google Scholar 

  • Morris M, Di Costanzo G, Fox S, Werman R (1983) Depolarizing action of GABA gamma-aminobutyric acid on myelinated fibers of peripheral nerve. Brain Res 278:117–126

    PubMed  CAS  Google Scholar 

  • Munro G, Erichsen HE, Rae MG, Mirza NR (2011) A question of balance positive versus negative allosteric modulation of GABAA receptor subtypes as a driver of analgesic efficacy in rat models of inflammatory and neuropathic pain. Neuropharmacol 61:121–132

    CAS  Google Scholar 

  • Naik AK, Pathirathna S, Jevtovic-Todorovic V (2008) GABAA receptor modulation in dorsal root ganglia in vivo affects chronic pain after nerve injury. Neuroscience 154:1539–1553

    PubMed  CAS  Google Scholar 

  • Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    PubMed  CAS  Google Scholar 

  • Nusser Z, Roberts JD, Baude A, Richards JG, Somogyi P (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J Neurosci 15:2948–2960

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996) Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc Natl Acad Sci U S A 93:11939–11944

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nusser Z, Cull-Candy S, Farrant M (1997) Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19(3):697–709

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Nusser Z, Ahmad Z, Tretter V, Fuchs K, Wisden W, Sieghart W, Somogyi P (1999) Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the alpha6 subunit gene. Eur J Neurosci 11:1685–1697

    PubMed  CAS  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev 60:243–260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ornung G, Ottersen OP, Cullheim S, Ulfhake B (1998) Distribution of glutamate, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp Brain Res 118:517–532

    PubMed  CAS  Google Scholar 

  • Pape JR, Bertrand SS, Lafon P, Odessa MF, Chaigniau M, Stiles JK, Garret M (2009) Expression of GABAA receptor alpha3-, theta-, and epsilon-subunit mRNAs during rat CNS development and immunolocalization of the epsilon subunit in developing postnatal spinal cord. Neuroscience 160:85–96

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paul J, Zeilhofer HU, Fritschy JM (2012) Selective distribution of GABAA receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol (in press)

    Google Scholar 

  • Pelley KA, Vaught JL (1987) An antinociceptive profile of kojic amine: an analogue of gamma-aminobutyric acid (GABA). Neuropharmacology 26:301–307

    PubMed  CAS  Google Scholar 

  • Peng YY, Frank E (1989) Activation of GABAA receptors causes presynaptic and postsynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 9:1516–1522

    PubMed  CAS  Google Scholar 

  • Persohn E, Malherbe P, Richards JG (1991) In situ hybridization histochemistry reveals a diversity of GABAA receptor subunit mRNAs in neurons of the rat spinal cord and dorsal root ganglia. Neuroscience 42:497–507

    PubMed  CAS  Google Scholar 

  • Petri S, Schmalbach S, Grosskreutz J, Krampfl K, Grothe C, Dengler R, Van Den Bosch L, Robberecht W, Bufler J (2005) The cellular mRNA expression of GABA and glutamate receptors in spinal motor neurons of SOD1 mice. J Neurol Sci 238:25–30

    PubMed  CAS  Google Scholar 

  • Rees H, Sluka KA, Westlund KN et al (1995) The role of glutamate and GABA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat. J Physiol 484:437–445

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80:767–852

    PubMed  CAS  Google Scholar 

  • Réthelyi M, Capowski JJ (1977) The terminal arborization pattern of primary afferent fibers in the substantia gelatinosa of the spinal cord in the cat. J Physiol (Paris) 73:269–277

    Google Scholar 

  • Richards JG, Schoch P, Häring P, Takacs B, Möhler H (1987) Resolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J Neurosci 7:1866–1886

    PubMed  CAS  Google Scholar 

  • Roberts LA, Beyer C, Komisaruk BR (1986) Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci 39:1667–1674

    PubMed  CAS  Google Scholar 

  • Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ (2005) Centrally-mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 516:131–138

    PubMed  CAS  Google Scholar 

  • Ruano D, Létang V, Biton B, Avenet P, Benavides J, Scatton B, Vitorica J (2000) Subunit composition of rat ventral spinal cord GABAA receptors, assessed by single cell RT-multiplex PCR. Neuroreport 11:3169–3173

    PubMed  CAS  Google Scholar 

  • Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 10:685–697

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    PubMed  CAS  Google Scholar 

  • Rudomin P, Engberg I, Jiménez I (1981) Mechanisms involved in presynaptic depolarization of group I and rubrospinal fibers in cat spinal cord. J Neurophysiol 46:532–548

    PubMed  CAS  Google Scholar 

  • Rudomin P, Jiménez I, Enriquez M (1991) Effects of stimulation of group I afferents from flexor muscles on heterosynaptic facilitation of monosynaptic reflexes produced by Ia and descending inputs: a test for presynaptic inhibition. Exp Brain Res 85:93–102

    PubMed  CAS  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol 63:20–101

    PubMed  CAS  Google Scholar 

  • Schmitt DE, Hill RH, Grillner S (2004) The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network. J Neurophysiol 92:2357–2367

    PubMed  CAS  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490

    PubMed  CAS  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269

    PubMed  CAS  Google Scholar 

  • Serafini R, Maric D, Maric I, Ma W, Fritschy JM, Zhang L, Barker JL (1998) Dominant GABA(A) receptor/Cl- channel kinetics correlate with the relative expressions of α2, α3, α5 and β3 subunits in embryonic rat neurones. Eur J Neurosci 10:334–349

    PubMed  CAS  Google Scholar 

  • Singer E, Placheta P (1980) Reduction of [3H]muscimol binding sites in rat dorsal spinal cord after neonatal capsaicin treatment. Brain Res 202:484–487

    PubMed  CAS  Google Scholar 

  • Sinkkonen ST, Vekovischeva OY, Möykkynen T (2004) Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model. Eur J Neurosci 20:2168–2178

    PubMed  Google Scholar 

  • Sivilotti L, Woolf CJ (1994) The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 72:169–179

    PubMed  CAS  Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABA, receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    PubMed  CAS  Google Scholar 

  • Somogyi P, Fritschy JM, Benke D, Roberts JD, Sieghart W (1996) The γ2 subunit of the GABAA-receptor is concentrated in synaptic junctions containing the α1 and β2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35:1425–1444

    PubMed  CAS  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    PubMed  CAS  PubMed Central  Google Scholar 

  • Street LJ, Sternfeld F, Jelley RA, Reeve AJ, Carling RW, Moore KW, McKernan RM, Sohal B, Cook S, Pike A, Dawson GR, Bromidge FA, Wafford KA, Seabrook GR, Thompson SA, Marshall G, Pillai GV, Castro JL, Atack JR, MacLeod AM (2004) Synthesis and biological evaluation of 3-heterocyclyl-7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines and analogues as subtype-selective inverse agonists for theGABA(A)alpha5 benzodiazepine binding site. J Med Chem 47:3642–3657

    PubMed  CAS  Google Scholar 

  • Sur C, Mckernan R, Triller A (1995) Subcellular localization of the GABAA receptor γ2 subunit in the rat spinal cord. Eur J Neurosci 7:1323–1332

    PubMed  CAS  Google Scholar 

  • Takahashi A, Mashimo T, Uchida I (2006) GABAergic tonic inhibition of substantia gelatinosa neurons in mouse spinal cord. Neuroreport 17:1331–1335

    PubMed  CAS  Google Scholar 

  • Tegner J, Matsushima T, El Manira A, Grillner S (1993) The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. J Neurophysiol 69:647–657

    PubMed  CAS  Google Scholar 

  • Todd AJ, Watt C, Spike RC, Sieghart W (1996) Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J Neurosci 16:974–982

    PubMed  CAS  Google Scholar 

  • Toennies G (1938) A sulfoxide of methionine. Science 88:545–546

    PubMed  CAS  Google Scholar 

  • Torsney C, MacDermott AB (2006) Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 26:1833–1843

    PubMed  CAS  Google Scholar 

  • Vit JP, Ohara PT, Sundberg C, Rubi B, Maechler P, Liu C, Puntel M, Lowenstein P, Castro M, Jasmin L (2009) Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol Pain 5:42

    PubMed  PubMed Central  Google Scholar 

  • Waldvogel HJ, Faull RL, Jansen KL, Dragunow M, Richards JG, Mohler H, Streit P (1990) GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 39:361–385

    PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Baer K, Eady E, Allen KL, Gilbert RT, Mohler H, Rees MI, Nicholson LF, Faull RL (2010) Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study. J Comp Neurol 518:305–328

    PubMed  CAS  Google Scholar 

  • Walker MC (2008) GABAA receptor subunit specificity: a tonic for the excited brain. J Physiol 586:921–922

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walker MC, Semyanov A (2008) Regulation of excitability by extrasynaptic GABAA receptors. Results Probl Cell Differ 44:29–48

    PubMed  CAS  Google Scholar 

  • Wang L, Spary E, Deuchars J, Deuchars SA (2008) Tonic GABAergic inhibition of sympathetic preganglionic neurons: a novel substrate for sympathetic control. J Neurosci 28:12445–12452

    PubMed  CAS  Google Scholar 

  • Willis WD (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124:395–421

    PubMed  CAS  Google Scholar 

  • Wisden W, Gundlach AL, Barnard EA, Seeburg PH, Hunt SP (1991) Distribution of GABAA receptor subunit mRNAs in rat lumbar spinal cord. Brain Res Mol Brain Res 10:179–183

    PubMed  CAS  Google Scholar 

  • Witschi R, Punnakkal P, Paul J, Walczak JS, Cervero F, Fritschy JM, Kuner R, Keist R, Rudolph U, Zeilhofer HU (2011) Presynaptic α2-GABAA receptors in primary afferent depolarization and spinal pain control. J Neurosci 31:8134–8142

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Zorumski CF (1989) Trifluoperazine blocks GABA-gated chloride currents in cultured chick spinal cord neurons. J Neurophysiol 61:363–373

    PubMed  CAS  Google Scholar 

  • Yoshimura M, Jessell T (1990) Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J Physiol 430:315–335

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zarnowska ED, Keist R, Rudolph U, Pearce RA (2009) GABAA receptor α5 subunits contribute to GABAA, slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101:1179–1191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zeilhofer HU, Benke D, Yevenes GE (2012) Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 52:111–133

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Delgado-Lezama .

Editor information

Editors and Affiliations

Concluding Remarks

Concluding Remarks

Extrasynaptic GABAA receptors containing α4, α6, and α5 subunits represent < 15 % of the total GABAAR population in the CNS. However, they seem to play an important role in controlling neuronal excitability, as well as in motor control, and locomotor function.

In contrast to the extensive research conducted to characterize the expression and function of extrasynaptic GABAARs in supraspinal neurons, much less research attention has been paid to the spinal cord. For example, though most of the extrasynaptic GABAAR subunits have been identified in the spinal cord, little is known concerning their function in pre and postsynaptic membranes. To our knowledge, there is only one report demonstrating the presence of a GABAergic tonic current in spinal cord motoneurons (Castro et al. 2011a) , and also, just a few characterizing the GABAergic tonic current in other cell types including ventral horn interneurons (Grasshoff et al. 2008; Castro et al. 2011b) dorsal horn interneurons (Takahashi et al. 2006; Mitchell et al. 2007; Han and Youn 2008; Bonin et al. 2011) and chick embryo spinal cord neurons (Yang and Zorumski 1989; Chub and O’Donovan 2001) . Therefore, the physiological role of the GABAergic tonic current is far from being elucidated.

Recent studies have shown that spinal motoneuron excitability is modulated by high affinity GABAA receptors tonically active by ambient GABA. Although it is known that shunting its membrane allow neurons to filter out irrelevant inputs responding with an action potential only to pertinent information (Bautista et al. 2010) , additional research is needed to understand which GABAARs mediate the tonic inhibitory current in motoneurons and how they perform such an important task. Likewise, identifying the source of GABA is a relevant topic for future studies.

Interestingly, investigation into the field of pain has been performed to identify the GABAAR isoforms responsible for spinal antihyperalgesia. Using a molecular approach, it has been possible to determine the benzodiazepine-sensitive α subunit involved in spinal in this process. Knabl et al. (2008) found strong spinal antihyperalgesia attenuation in mice harboring a point-mutation in the α2 subunit and less attenuation in mice with a point-mutation in the α3–α5-subunits . In line with this, studies carried out in rodent pain models have shown that by modifying the activity of pre- and postsynaptic GABAARs with allosteric modulators, it is possible to induce antihyperalgesia. However, more research is necessary to confirm the possible participation of extrasynaptic GABAAR activity in neurons and primary afferents involved in nociception (Zeilhofer et al. 2012) . Of particular interest is the modulation of the DRR in primary afferents by extrasynaptic GABAA receptors because they can be blocked without producing the undesirable side effects of classical benzodiazepines such as sedation. Likewise, based on their modulatory effects on spinal reflexes and stereotyped locomotor activity in the spinal cord of different species (adults and neonates), it is reasonable to suggest that in addition to the potential therapeutic roles in anesthesia and nociception, novel GABAAR ligands would provide novel therapeutic tools to improve motor and locomotor activity after spinal cord injury or related pathophysiological conditions (e.g., multiple sclerosis).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loeza-Alcocer, E., Andrés, C., Aguilar, J., Felix, R., Delgado-Lezama, R. (2014). Extrasynaptic GABAA Receptors and Tonic Inhibition in Spinal Cord. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_8

Download citation

Publish with us

Policies and ethics