Skip to main content

The Pharmacology of Extrasynaptic GABAA Receptors

  • Chapter
  • First Online:
Extrasynaptic GABAA Receptors

Part of the book series: The Receptors ((REC,volume 27))

Abstract

The different subunits that make up the family of GABAA receptor subtypes have unique distributions within the brain and nervous system. Their localization at the neuronal level is in many cases not necessarily associated with synaptic densities, and this has led to the hypothesis that extrasynaptic receptors perform a unique function in controlling excitability. In most cases, the subunits that make up extrasynaptic receptors are different to those on synaptic membranes and hence have their own unique pharmacological profile, both in respect to agonists and allosteric modulators. Here I will review the different receptor subtypes that have been classified as extrasynaptic, as well as those that may serve both roles depending on their location, with a view to illustrating their pharmacological properties, and their impact on neuronal function. The identification of functional differences and allosteric sites for specific modulation of these receptors offers an opportunity to gain more knowledge of the role of receptor subtypes and the potential to develop novel therapeutic agents that should impact a number of psychiatric and neurological disorders where these receptors are implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramian AM, Comenencia-Ortiz E, Vithlani M, Tretter EV, Sieghart W, Davies PA, Moss SJ (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285:41795–41805

    PubMed  CAS  PubMed Central  Google Scholar 

  • Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Bräuner-Osborne H, Frølund B, Clausen RP, Chebib M, Wellendorph P (2012) α4βδ GABAA receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proc Natl Acad Sci U S A 109:13404–13409

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alexeev M, Grosenbaugh DK, Mott DD, Fisher JL (2012) The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABAA receptors. Neuropharmacology 62:2507–2514

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atack JR (2011) GABAA receptor subtype-selective modulators. II. α5-selective inverse agonists for cognition enhancement. Curr Top Med Chem 11:1203–1214

    PubMed  CAS  Google Scholar 

  • Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006) L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for 5-containing GABAA receptors. Neuropharmacology 51:1023–1029

    PubMed  CAS  Google Scholar 

  • Baer K, Essrich C, Balsiger S, Wick MJ, Harris RA, Fritschy JM, Lüscher B (2000) Rescue of gamma2 subunit-deficient mice by transgenic overexpression of the GABAA receptor gamma2S or gamma2L subunit isoforms. Eur J Neurosci 12:2639–2643

    PubMed  CAS  Google Scholar 

  • Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J, Gasser R, Moreau JL, Wettstein JG, Buettelmann B, Knust H, Thomas AW, Trube G, Hernandez MC (2009) RO4938581, a novel cognitive enhancer acting at GABAA alpha5 subunit-containing receptors. Psychopharmacology (Berl) 202:207–223

    CAS  Google Scholar 

  • Baur R, Kaur KH, Sigel E (2009) Structure of alpha6 beta3 delta GABAA receptors and their lack of ethanol sensitivity. J Neurochem 111:1172–1181

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575

    PubMed  CAS  Google Scholar 

  • Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 25:11513–11520

    PubMed  CAS  Google Scholar 

  • Belujon P, Baufreton J, Grandoso L, Boué-Grabot E, Batten TF, Ugedo L, Garret M, Taupignon AI (2009) Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 102:2312–2325

    PubMed  CAS  Google Scholar 

  • Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    PubMed  CAS  Google Scholar 

  • Bieda MC, Su H, Maciver MB (2009) Anesthetics discriminate between tonic and phasic gamma-aminobutyric acid receptors on hippocampal CA1 neurons. Anesth Analg 108:484–490

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bonnert TP, McKernan RM, Farrar S, le BB, Heavens RP, Smith DW, Hewson L, Rigby MR, Sirinathsinghji DJ, Brown N, Wafford KA, Whiting PJ (1999) Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci U S A 96:9891–9896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borghese CM, Harris RA (2007) Studies of ethanol actions on recombinant delta-containing gamma-aminobutyric acid type A receptors yield contradictory results. Alcohol 41:155–162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borghese CM, Stórustovu S, Ebert B, Herd MB, Belelli D, Lambert JJ, Marshall G, Wafford KA, Harris RA (2006) The delta subunit of gamma-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther 316:1360–1368

    PubMed  CAS  Google Scholar 

  • Braudeau J, Delatour B, Duchon A, Pereira PL, Dauphinot L, de Chaumont F, Olivo-Marin JC, Dodd RH, Hérault Y, Potier MC (2011) Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J Psychopharmacol 25:1030–1042

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73:23–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497:753–759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bright DP, Renzi M, Bartram J, McGee TP, MacKenzie G, Hosie AM, Farrant M, Brickley SG (2011) Profound desensitization by ambient GABA limits activation of δ-containing GABAA receptors during spillover. J Neurosci 31:753–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABAA receptors. Br J Pharmacol 136:965–974

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brünig I, Scotti E, Sidler C, Fritschy JM (2002) Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 443:43–55

    PubMed  Google Scholar 

  • Capogna M (2011) Neurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal-hippocampal dialogue. J Physiol 589:1875–1883

    PubMed  CAS  PubMed Central  Google Scholar 

  • Capogna M, Pearce RA (2011) GABA A, slow: causes and consequences. Trends Neurosci 34:101–112

    PubMed  CAS  Google Scholar 

  • Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA (2004) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 101:3662–3667

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castro A, Aguilar J, González-Ramírez R, Loeza-Alcocer E, Canto-Bustos M, Felix R, Delgado-Lezama R (2011) Tonic inhibition in spinal ventral horn interneurons mediated by α5 subunit-containing GABAA receptors. Biochem Biophys Res Commun 412:26–31

    PubMed  CAS  Google Scholar 

  • Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    PubMed  CAS  Google Scholar 

  • Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci U S A 103:15230–15235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chandra D, Werner DF, Liang J, Suryanarayanan A, Harrison NL, Spigelman I, Olsen RW, Homanics GE (2008) Normal acute behavioral responses to moderate/high dose ethanol in GABAA receptor alpha 4 subunit knockout mice. Alcohol Clin Exp Res 32:10–18

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chiara DC, Dostalova Z, Jayakar SS, Zhou X, Miller KW, Cohen JB (2012) Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. BioChemistry 51:836–847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choi DS, Wei W, Deitchman JK, Kharazia VN, Lesscher HM, McMahon T, Wang D, Qi ZH, Sieghart W, Zhang C, Shokat KM, Mody I, Messing RO (2008) Protein kinase C delta regulates ethanol intoxication and enhancement of GABA-stimulated tonic current. J Neurosci 28:11890–11899

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  CAS  Google Scholar 

  • Cope DW, Hughes SW, Crunelli V (2005) GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci 25:11553–11563

    PubMed  CAS  Google Scholar 

  • Davies PA, Hanna MC, Hales TG, Kirkness EF (1997) Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385:820–823

    PubMed  CAS  Google Scholar 

  • Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR (2006) An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345

    PubMed  CAS  Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    PubMed  Google Scholar 

  • Duguid I, Branco T, London M, Chadderton P, Häusser M (2012) Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J Neurosci 32:11132–11143

    PubMed  CAS  Google Scholar 

  • Feng HJ, Bianchi MT, Macdonald RL (2004) Pentobarbital differentially modulates alpha1beta3delta and alpha1beta3gamma2L GABAA receptor currents. Mol Pharmacol 66:988–1003

    PubMed  CAS  Google Scholar 

  • Feng HJ, Botzolakis EJ, Macdonald RL (2009) Context-dependent modulation of alphabetagamma and alphabetadelta GABAA receptors by penicillin: implications for phasic and tonic inhibition. Neuropharmacology 56:161–173

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feng HJ, Macdonald RL (2010) Barbiturates require the N terminus and first transmembrane domain of the delta subunit for enhancement of alpha1beta3delta GABAA receptor currents. J Biol Chem 285:23614–23621

    PubMed  CAS  PubMed Central  Google Scholar 

  • Forman SA, Miller KW (2011) Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels. Can J Anaesth 58:191–205

    PubMed  PubMed Central  Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    PubMed  CAS  Google Scholar 

  • Fujii M, Kanematsu T, Ishibashi H, Fukami K, Takenawa T, Nakayama KI, Moss SJ, Nabekura J, Hirata M (2010) Phospholipase C-related but catalytically inactive protein is required for insulin-induced cell surface expression of gamma-aminobutyric acid type A receptors. J Biol Chem 285:4837–4846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gill KM, Lodge DJ, Cook JM, Aras S, Grace AA (2011) A novel α5 GABAAR-positive allosteric modulator reverses hyperactivation of the dopamine system in the MAM model of schizophrenia. Neuropsychopharmacology 36:1903–1911

    PubMed  CAS  PubMed Central  Google Scholar 

  • Glykys J, Mody I (2006) Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor alpha5 subunit-deficient mice. J Neurophysiol 95:2796–2807

    PubMed  CAS  Google Scholar 

  • Gulinello M, Gong QH, Smith SS (2002) Progesterone withdrawal increases the alpha4 subunit of the GABAA receptor in male rats in association with anxiety and altered pharmacology—a comparison with female rats. Neuropharmacology 43:701–714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Günther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 92:7749–7753

    PubMed  PubMed Central  Google Scholar 

  • Harney SC, Frenguelli BG, Lambert JJ (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 45:873–883

    PubMed  CAS  Google Scholar 

  • Herd MB, Haythornthwaite AR, Rosahl TW, Wafford KA, Homanics GE, Lambert JJ, Belelli D (2008) The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J Physiol 586:989–1004

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herd MB, Foister N, Chandra D, Peden DR, Homanics GE, Brown VJ, Balfour DJ, Lambert JJ, Belelli D (2009) Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role for delta-GABAA receptors. Eur J Neurosci 29:1177–1187

    PubMed  PubMed Central  Google Scholar 

  • Hevers W, Hadley SH, Lüddens H, Amin J (2008) Ketamine, but not phencyclidine, selectively modulates cerebellar GABAA receptors containing alpha6 and delta subunits. J Neurosci 28:5383–5393

    PubMed  CAS  Google Scholar 

  • Hoestgaard-Jensen K, Dalby NO, Wolinsky TD, Murphey C, Jones KA, Rottländer M, Frederiksen K, Watson WP, Jensen K, Ebert B (2010) Pharmacological characterization of a novel positive modulator at alpha 4 beta 3 delta-containing extrasynaptic GABAA receptors. Neuropharmacology 58:702–711

    PubMed  CAS  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    PubMed  CAS  Google Scholar 

  • Hosie AM, Clarke L, da Silva H, Smart TG (2009) Conserved site for neurosteroid modulation of GABAA receptors. Neuropharmacology 56:149–154

    PubMed  CAS  Google Scholar 

  • Houston CM, McGee TP, Mackenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32:3887–3897

    PubMed  CAS  Google Scholar 

  • Hsu FC, Waldeck R, Faber DS, Smith SS (2003) Neurosteroid effects on GABAergic synaptic plasticity in hippocampus. J Neurophysiol 89:1929–1940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iyer SV, Benavides RA, Chandra D, Cook JM, Rallapalli S, June HL, Homanics GE (2011) α4-Containing GABAA Receptors are Required for Antagonism of Ethanol-Induced Motor Incoordination and Hypnosis by the Imidazobenzodiazepine Ro15-4513. Front Pharmacol 2:18

    PubMed  PubMed Central  Google Scholar 

  • Jenkins A, Greenblatt EP, Faulkner HJ, Bertaccini E, Light A, Lin A, Andreasen A, Viner A, Trudell JR, Harrison NL (2001) Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci 21:RC136

    PubMed  CAS  Google Scholar 

  • Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR (2013) The delta selective compound 2 (DS2): a detailed study of subunit selectivity, mechanism and site of action utilising human recombinant and rodent native GABAA receptors. Br J Pharmacol 168:1118–1132

    Google Scholar 

  • Jeong JA, Kim EJ, Jo JY, Song JG, Lee KS, Kim HW, Lee SD, Jeon BH, Lee JU, Park JB (2011) Major role of GABAA-receptor mediated tonic inhibition in propofol suppression of supraoptic magnocellular neurons. Neurosci Lett 494:119–123

    PubMed  CAS  Google Scholar 

  • Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA (2005) An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 94:4491–4501

    PubMed  CAS  Google Scholar 

  • Jia F, Yue M, Chandra D, Homanics GE, Goldstein PA, Harrison NL (2008a) Isoflurane is a potent modulator of extrasynaptic GABAA receptors in the thalamus. J Pharmacol Exp Ther 324:1127–1135

    CAS  Google Scholar 

  • Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE, Harrison NL (2008b) Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus. J Neurosci 28:106–115

    CAS  Google Scholar 

  • Jin Z, Jin Y, Kumar-Mendu S, Degerman E, Groop L, Birnir B (2011) Insulin reduces neuronal excitability by turning on GABAA channels that generate tonic current. PLoS ONE 6:e16188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones SM, Palmer MJ (2009) Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J Neurophysiol 102:691–699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones SM, Palmer MJ (2011) Pharmacological analysis of the activation and receptor properties of the tonic GABACR current in retinal bipolar cell terminals. PLoS ONE 6:e24892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones-Davis DM, Song L, Gallagher MJ, Macdonald RL (2005) Structural determinants of benzodiazepine allosteric regulation of GABAA receptor currents. J Neurosci 25:8056–8065

    PubMed  CAS  Google Scholar 

  • Karim N, Wellendorph P, Absalom N, Bang LH, Jensen ML, Hansen MM, Lee HJ, Johnston GA, Hanrahan JR, Chebib M (2012a) Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABAA receptor subtypes indicate a different binding mode for GABA at these receptors. Biochem Pharmacol 84:549–557

    CAS  Google Scholar 

  • Karim N, Curmi J, Gavande N, Johnston GA, Hanrahan JR, Tierney ML, Chebib M (2012b) 2(-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABAA receptors. Br J Pharmacol 165:880–896

    CAS  Google Scholar 

  • Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32:1868–1888

    PubMed  Google Scholar 

  • Kaur KH, Baur R, Sigel E (2009) Unanticipated structural and functional properties of delta-subunit-containing GABAA receptors. J Biol Chem 284:7889–7896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koh MT, Rosenzweig-Lipson S, Gallagher M (2013) Selective GABAA α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology 64:145–152

    PubMed  CAS  PubMed Central  Google Scholar 

  • Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H (2007) Does ethanol act preferentially via selected brain GABAA receptor subtypes? The current evidence is ambiguous. Alcohol 41:163–176

    PubMed  CAS  Google Scholar 

  • Lancel M, Langebartels A (2000) gamma-aminobutyric Acid(A) (GABAA) agonist 4,5, 6, 7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol persistently increases sleep maintenance and intensity during chronic administration to rats. J Pharmacol Exp Ther 293:1084–1090

    PubMed  CAS  Google Scholar 

  • Lankford DA, Corser BC, Zheng YP, Li Z, Snavely DB, Lines CR, Deacon S (2008) Effect of gaboxadol on sleep in adult and elderly patients with primary insomnia: results from two randomized, placebo-controlled, 30-night polysomnography studies. Sleep 31:1359–1370

    PubMed  PubMed Central  Google Scholar 

  • Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    PubMed  CAS  Google Scholar 

  • Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    PubMed  CAS  Google Scholar 

  • Lees G, Edwards MD (1998) Modulation of recombination human gamma-aminobutyric acid A receptors by isoflurane: influence of the delta subunit. Anesthesiology 88:206–217

    PubMed  CAS  Google Scholar 

  • Lewis RW, Mabry J, Polisar JG, Eagen KP, Ganem B, Hess GP (2010) Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 49:4841–4851

    PubMed  CAS  Google Scholar 

  • Li GD, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 26:11599–11605

    PubMed  CAS  Google Scholar 

  • Linden AM, Schmitt U, Leppä E, Wulff P, Wisden W, Lüddens H, Korpi ER (2011) Ro 15-4513 Antagonizes Alcohol-Induced Sedation in Mice Through αβγ2-type GABAA Receptors. Front Neurosci 5:3

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lodge DJ, Grace AA (2007) Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 27:11424–11430

    PubMed  CAS  Google Scholar 

  • Loebrich S, Bähring R, Katsuno T, Tsukita S, Kneussel M (2006) Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton. EMBO J 25:987–999

    PubMed  CAS  PubMed Central  Google Scholar 

  • Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385–409

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maguire J, Mody I (2008) GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maguire J, Mody I (2009) Steroid hormone fluctuations and GABAAR plasticity. Psychoneuroendocrinology 34(Suppl 1):S84–S90

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maksay G, Thompson SA, Wafford KA (2003) The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABAA receptor-ionophores. Neuropharmacology 44:994–1002

    PubMed  CAS  Google Scholar 

  • Mangan PS, Sun C, Carpenter M, Goodkin HP, Sieghart W, Kapur J (2005) Cultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors. Mol Pharmacol 67:775–788

    PubMed  CAS  Google Scholar 

  • Marowsky A, Rudolph U, Fritschy JM, Arand M (2012) Tonic inhibition in principal cells of the amygdala: a central role for α3 subunit-containing GABAA receptors. J Neurosci 32:8611–8619

    PubMed  CAS  Google Scholar 

  • Martin LJ, Oh GH, Orser BA (2009) Etomidate targets alpha5 gamma-aminobutyric acid subtype A receptors to regulate synaptic plasticity and memory blockade. Anesthesiology 111:1025–1035

    PubMed  CAS  Google Scholar 

  • McCracken ML, Borghese CM, Trudell JR, Harris RA (2010) A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics. J Pharmacol Exp Ther 335:600–606

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143

    PubMed  CAS  Google Scholar 

  • Mehta AK, Marutha Ravindran CR, Ticku MK (2007) Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain. Brain Res 1165:15–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mihalek RM, Banerjee PK, Korpi ER, Quinlan JJ, Firestone LL, Mi ZP, Lagenaur C, Tretter V, Sieghart W, Anagnostaras SG, Sage JR, Fanselow MS, Guidotti A, Spigelman I, Li Z, DeLorey TM, Olsen RW, Homanics GE (1999) Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 96:12905–12910

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mihalek RM, Bowers BJ, Wehner JM, Kralic JE, VanDoren MJ, Morrow AL, Homanics GE (2001) GABAA-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res 25:1708–1718

    PubMed  CAS  Google Scholar 

  • Möhler H (2012) Cognitive enhancement by pharmacological and behavioral interventions: the murine Down syndrome model. Biochem Pharmacol 84:994–999

    PubMed  Google Scholar 

  • Moragues N, Ciofi P, Tramu G, Garret M (2002) Localisation of GABAA receptor epsilon-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the theta-subunit in rat brain. Neuroscience 111:657–669

    PubMed  CAS  Google Scholar 

  • Mortensen M, Smart TG (2006) Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 577:841–856

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588:1251–1268

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mortensen M, Patel B, Smart TG (2011) GABA Potency at GABAA Receptors Found in Synaptic and Extrasynaptic Zones. Front Cell Neurosci 6:1

    PubMed  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–16703

    PubMed  CAS  Google Scholar 

  • Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes AR (2007) Blockade of alcohol’s amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 53:810–820

    PubMed  CAS  Google Scholar 

  • Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, Tamás G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

    PubMed  PubMed Central  Google Scholar 

  • Pape JR, Bertrand SS, Lafon P, Odessa MF, Chaigniau M, Stiles JK, Garret M (2009) Expression of GABAA receptor alpha3-, theta-, and epsilon-subunit mRNAs during rat CNS development and immunolocalization of the epsilon subunit in developing postnatal spinal cord. Neuroscience 160:85–96

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peden DR, Petitjean CM, Herd MB, Durakoglugil MS, Rosahl TW, Wafford K, Homanics GE, Belelli D, Fritschy JM, Lambert JJ (2008) Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones. J Physiol 586:965–987

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    PubMed  CAS  Google Scholar 

  • Prenosil GA, Schneider Gasser EM, Rudolph U, Keist R, Fritschy JM, Vogt KE (2006) Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol 96:846–857

    PubMed  CAS  Google Scholar 

  • Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO (2007) Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 282:33052–33063

    PubMed  CAS  Google Scholar 

  • Quirk K, Whiting PJ, Ragan CI, McKernan RM (1995) Characterisation of delta-subunit containing GABAA receptors from rat brain. Eur J Pharmacol 290:175–181

    PubMed  CAS  Google Scholar 

  • Rau V, Iyer SV, Oh I, Chandra D, Harrison N, Eger EI 2nd, Fanselow MS, Homanics GE, Sonner JM (2009) Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane. Anesth Analg 109:1816–1822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saliba RS, Kretschmannova K, Moss SJ (2012) Activity-dependent phosphorylation of GABAA receptors regulates receptor insertion and tonic current. EMBO J 31:2937–2951

    PubMed  CAS  PubMed Central  Google Scholar 

  • Santhakumar V, Jones RT, Mody I (2010) Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 167:644–655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saxena NC, Macdonald RL (1996) Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol Pharmacol 49:567–579

    PubMed  CAS  Google Scholar 

  • Sebe JY, Looke-Stewart EC, Estrada RC, Baraban SC (2010) Robust tonic GABA currents can inhibit cell firing in mouse newborn neocortical pyramidal cells. Eur J Neurosci 32:1310–1318

    PubMed  PubMed Central  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269

    PubMed  CAS  Google Scholar 

  • Sergeeva OA, Kletke O, Kragler A, Poppek A, Fleischer W, Schubring SR, Görg B, Haas HL, Zhu XR, Lübbert H, Gisselmann G, Hatt H (2010) Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors. J Biol Chem 285:23985–23993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Serwanski DR, Miralles CP, Christie SB, Mehta AK, Li X, De Blas AL (2006) Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J Comp Neurol 499:458–470

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shannon EE, Shelton KL, Vivian JA, Yount I, Morgan AR, Homanics GE, Grant KA (2004) Discriminative stimulus effects of ethanol in mice lacking the gamma-aminobutyric acid type A receptor delta subunit. Alcohol Clin Exp Res 28:906–913

    PubMed  CAS  Google Scholar 

  • Shu HJ, Bracamontes J, Taylor A, Wu K, Eaton MM, Akk G, Manion B, Evers AS, Krishnan K, Covey DF, Zorumski CF, Steinbach JH, Mennerick S (2012) Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes. Br J Pharmacol 165:2228–2243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sigel E, Lüscher BP (2011) A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem 11:241–246

    PubMed  CAS  Google Scholar 

  • Sigel E, Baur R, Rácz I, Marazzi J, Smart TG, Zimmer A, Gertsch J (2011) The major central endocannabinoid directly acts at GABAA receptors. Proc Natl Acad Sci U S A 108:18150–18155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinkkonen ST, Hanna MC, Kirkness EF, Korpi ER (2000) GABAA receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J Neurosci 20:3588–3595

    PubMed  CAS  Google Scholar 

  • Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J Neurosci 22:RC223

    PubMed  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stórustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther 316:1351–1359

    PubMed  Google Scholar 

  • Studer R, von Boehmer L, Haenggi T, Schweizer C, Benke D, Rudolph U, Fritschy JM (2006) Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice. Eur J Neurosci 24:1307–1315

    PubMed  Google Scholar 

  • Succol F, Fiumelli H, Benfenati F, Cancedda L, Barberis A (2012) Intracellular chloride concentration influences the GABAA receptor subunit composition. Nat Commun 3:738

    PubMed  PubMed Central  Google Scholar 

  • Sundstrom-Poromaa I, Smith DH, Gong QH, Sabado TN, Li X, Light A, Wiedmann M, Williams K, Smith SS (2002) Hormonally regulated alpha(4)beta(2)delta GABAA receptors are a target for alcohol. Nat Neurosci 5:721–722

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of alpha4 and delta subunits of the gamma-aminobutyric acid A receptor in rat thalamus. Mol Pharmacol 56:110–115

    PubMed  CAS  Google Scholar 

  • Tang X, Hernandez CC, Macdonald RL (2010) Modulation of spontaneous and GABA-evoked tonic alpha4beta3delta and alpha4beta3gamma2L GABAA receptor currents by protein kinase A. J Neurophysiol 103:1007–1019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson SA, Bonnert TP, Cagetti E, Whiting PJ, Wafford KA (2002) Overexpression of the GABAA receptor epsilon subunit results in insensitivity to anaesthetics. Neuropharmacology 43:662–668

    PubMed  CAS  Google Scholar 

  • Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ (2012) Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 6:23. (Epub 15 May 2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vardya I, Hoestgaard-Jensen K, Nieto-Gonzalez JL, Dósa Z, Boddum K, Holm MM, Wolinsky TD, Jones KA, Dalby NO, Ebert B, Jensen K (2012) Positive modulation of δ-subunit containing GABAA receptors in mouse neurons. Neuropharmacology 63:469–479

    PubMed  CAS  Google Scholar 

  • Vargas-Caballero M, Martin LJ, Salter MW, Orser BA, Paulsen O (2010) Alpha5 Subunit-containing GABAA receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. Neuropharmacology 58:668–675

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ (1996) Functional characterization of human gamma-aminobutyric acid A receptors containing the alpha 4 subunit. Mol Pharmacol 50:670–678

    PubMed  CAS  Google Scholar 

  • Wafford KA, Ebert B (2006) Gaboxadol-a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    PubMed  CAS  Google Scholar 

  • Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ (2009) Novel compounds selectively enhance delta subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology 56:182–189

    PubMed  CAS  Google Scholar 

  • Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci U S A 100:15218–15223

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wallner M, Hanchar HJ, Olsen RW (2006) Low-dose alcohol actions on alpha4beta3delta GABAA receptors are reversed by the behavioural alcohol antagonist Ro15-4513. Proc Natl Acad Sci U S A 103:8540–8545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388:686–690

    PubMed  CAS  Google Scholar 

  • Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379–8382

    PubMed  CAS  Google Scholar 

  • Werner DF, Kumar S, Criswell HE, Suryanarayanan A, Fetzer JA, Comerford CE, Morrow AL (2011) PKCγ is required for ethanol-induced increases in GABAA receptor α4 subunit expression in cultured cerebral cortical neurons. J Neurochem 116:554–563

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whittemore ER, Yang W, Drewe JA, Woodward RM (1996) Pharmacology of the human gamma-aminobutyric acid A receptor alpha 4 subunit expressed in Xenopus laevis oocytes. Mol Pharmacol 50:1364–1375

    PubMed  CAS  Google Scholar 

  • Wieland HA, Lüddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

    PubMed  CAS  Google Scholar 

  • Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABAA delta-subunit-containing receptors. Eur J Neurosci 25:1893–1899

    PubMed  Google Scholar 

  • Wohlfarth KM, Bianchi MT, Macdonald RL (2002) Enhanced neurosteroid potentiation of ternary GABAA receptors containing the delta subunit. J Neurosci 22:1541–1549

    PubMed  CAS  Google Scholar 

  • Wu X, Wu Z, Ning G, Guo Y, Ali R, Macdonald RL, De Blas AL, Luscher B, Chen G (2012) γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem 287:27417–27430

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita M, Marszalec W, Yeh JZ, Narahashi T (2006) Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABAA receptors. J Pharmacol Exp Ther 319:431–438

    PubMed  CAS  Google Scholar 

  • Yanovsky Y, Schubring S, Fleischer W, Gisselmann G, Zhu XR, Lübbert H, Hatt H, Rudolph U, Haas HL, Sergeeva OA (2012) GABAA receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies. Pflugers Arch 463:187–199

    PubMed  CAS  Google Scholar 

  • Yeung JY, Canning KJ, Zhu G, Pennefather P, MacDonald JF, Orser BA (2003) Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol 63:2–8

    PubMed  CAS  Google Scholar 

  • Yoon BE, Jo S, Woo J, Lee JH, Kim T, Kim D, Lee CJ (2011) The amount of astrocytic GABA positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol Brain 4:42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zarnowska ED, Keist R, Rudolph U, Pearce RA (2009) GABAA receptor alpha5 subunits contribute to GABAA slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101:1179–1191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zurek AA, Bridgwater EM, Orser BA (2012) Inhibition of α5 γ-aminobutyric acid type A receptors restores recognition memory after general anesthesia. Anesth Analg 114:845–855

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A Wafford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wafford, K. (2014). The Pharmacology of Extrasynaptic GABAA Receptors. In: Errington, A., Di Giovanni, G., Crunelli, V. (eds) Extrasynaptic GABAA Receptors. The Receptors, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1426-5_4

Download citation

Publish with us

Policies and ethics