Skip to main content

Examination of the Regulation of Galectin-3 Expression in Cancer

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1207))

Abstract

Galectin-3, a member of a β-galactoside-binding protein family, is involved in normal growth development as well as cancer progression and metastasis, but the detailed mechanisms of its functions or its transcriptional regulations are not well understood. Besides, several regulatory elements such as GC box, CRE motif, AP-1 site, and NF-κB sites, the promoter of galectin-3 gene (LGALS3) contains several CpG islands that can be methylated during tumorigenesis of prostate leading to the gene silencing. Here we describe protocols for identification of galectin-3 DNA methylation, suppression of DNA methyltransferases to reactivate galectin-3 expression, and development of methylation-specific polymerase chain reaction (MS-PCR) to assess galectin-3 expression in various biological specimens such as tissue, serum, and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakahara S, Raz A (2007) Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev 26:605–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Rabinovich GA, Liu FT, Hirashima M et al (2007) An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 66:143–158

    Article  CAS  PubMed  Google Scholar 

  3. Newlaczyl AU, Yu LG (2011) Galectin-3–a jack-of-all-trades in cancer. Cancer Lett 313:123–128

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed H, Guha P, Kaptan E et al (2011) Galectin-3: a potential target for cancer prevention. Trend Carbohydr Res 3:13–22

    Google Scholar 

  5. Braeuer RR, Shoshan E, Kamiya T et al (2012) The sweet and bitter sides of galectins in melanoma progression. Pigment Cell Melanoma Res 25:592–601

    Article  CAS  PubMed  Google Scholar 

  6. Danguy A, Camby I, Kiss R (2002) Galectins and cancer. Biochim Biophys Acta 1572:285–293

    Article  CAS  PubMed  Google Scholar 

  7. Califice S, Castronovo V, Van Den Brûle F (2004) Galectin-3 and cancer. Int J Oncol 25:983–992

    CAS  PubMed  Google Scholar 

  8. Hsu DK, Dowling CA, Jeng KC et al (1999) Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 81:519–526

    Article  CAS  PubMed  Google Scholar 

  9. Miyazaki J, Hokari R, Kato S et al (2002) Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep 9:1307–1312

    CAS  PubMed  Google Scholar 

  10. Yoshimura A, Gemma A, Hosoya Y et al (2003) Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer 37:159–164

    Article  CAS  PubMed  Google Scholar 

  11. Sakaki M, Oka N, Nakanishi R et al (2008) Serum level of galectin-3 in human bladder cancer. J Med Invest 55:127–132

    Article  PubMed  Google Scholar 

  12. Saussez S, Glinoer D, Chantrain G, Pattou F et al (2008) Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid 18:705–712

    Article  CAS  PubMed  Google Scholar 

  13. Saussez S, Decaestecker C, Mahillon V et al (2008) Galectin-3 upregulation during tumor progression in head and neck cancer. Laryngoscope 118:1583–1590

    Article  CAS  PubMed  Google Scholar 

  14. Pacis RA, Pilat MJ, Pienta KJ et al (2000) Decreased galectin-3 expression in prostate cancer. Prostate 44:118–123

    Article  CAS  PubMed  Google Scholar 

  15. Merseburger AS, Kramer MW, Hennenlotter J et al (2008) Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer. Prostate 68:72–77

    Article  PubMed  Google Scholar 

  16. Ahmed H, Cappello F, Rodolico V et al (2009) Evidence of heavy methylation in the galectin-3 promoter in early stages of prostate adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Transl Oncol 2:146–156

    Article  PubMed Central  PubMed  Google Scholar 

  17. Merseburger AS, Kramer MW, Hennenlotter J et al (2008) Loss of galectin-3 expression correlates with clear cell renal carcinoma progression and reduced survival. World J Urol 26:637–642

    Article  CAS  PubMed  Google Scholar 

  18. Ruebel KH, Jin L, Qian X et al (2005) Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res 65:1136–1140

    Article  CAS  PubMed  Google Scholar 

  19. Honjo Y, Inohara H, Akahani S et al (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640

    CAS  PubMed  Google Scholar 

  20. Dumic J, Dabelic S, Flögel M (2006) Galectin-3: an open-ended story. Biochem Biophys Acta 1760:616–635

    Article  CAS  PubMed  Google Scholar 

  21. Kadrofske MM, Openo KP, Wang JL (1998) The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch Biochem Biophys 349:7–20

    Article  CAS  PubMed  Google Scholar 

  22. Fogel S, Guittaut M, Legrand A et al (1999) The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 9:383–387

    Article  CAS  PubMed  Google Scholar 

  23. Hsu DK, Hammes SR, Kuwabara I et al (1996) Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 148:1661–1670

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Dumic J, Lauc G, Flogel M (2000) Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol Biochem 10:149–158

    Article  CAS  PubMed  Google Scholar 

  25. Stock M, Schafer H, Stricker S et al (2003) Expression of galectin-3 in skeletal tissues is controlled by Runx2. J Biol Chem 278:17360–17367

    Article  CAS  PubMed  Google Scholar 

  26. Costessi A, Pines A, D’Andrea P et al (2005) Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts’ response. Bone 36:418–432

    Article  CAS  PubMed  Google Scholar 

  27. Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed H, Banerjee PB, Vasta GR (2007) Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation. Biochem Biophys Res Commun 358:241–246

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed H (2010) Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. Biomark Cancer 2010:17–33

    Article  PubMed  Google Scholar 

  30. McKenna ES, Roberts CW (2009) Epigenetics and cancer without genomic instability. Cell Cycle 8:23–26

    Article  CAS  PubMed  Google Scholar 

  31. Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Robert MF, Morin S, Beaulieu N et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    Article  CAS  PubMed  Google Scholar 

  33. El-Osta A (2003) DNMT cooperativity–the developing links between methylation, chromatin structure and cancer. Bioessays 25:1071–1084

    Article  CAS  PubMed  Google Scholar 

  34. Benbrahim-Tallaa L, Waterland RA, Dill AL et al (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 115:1454–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Roll JD, Rivenbark AG, Jones WD et al (2008) DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7:15

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  CAS  PubMed  Google Scholar 

  37. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sansom OJ, Maddison K, Clarke AR (2007) Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nat Clin Pract Oncol 4:305–315

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Ng HH, Erdjument-Bromage H et al (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  41. Tyler JK, Kadonaga JT (1999) The “dark side” of chromatin remodeling: repressive effects on transcription. Cell 99:443–446

    Article  CAS  PubMed  Google Scholar 

  42. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed H (2012) Methylated DNA as promising marker for early diagnosis of cancer. J Bioanal Biomed 4:e108

    Google Scholar 

Download references

Acknowledgments

The work carried out by us was supported by the US Army Medical Research and Materiel Command grant W81XWH-07-1-0565, a start-up fund from the University of Maryland School of Medicine, and the National Institute of Health Grants CA133935 and CA141970 to H.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ahmed, H., Bandyopadhyaya, G. (2015). Examination of the Regulation of Galectin-3 Expression in Cancer. In: Stowell, S., Cummings, R. (eds) Galectins. Methods in Molecular Biology, vol 1207. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1396-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1396-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1395-4

  • Online ISBN: 978-1-4939-1396-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics