Skip to main content

The Clinical Development of Aurora Kinase Inhibitors in Acute Myeloid Leukemia

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1996 Accesses

Abstract

The Aurora family of serine/threonine kinases is essential for chromosome alignment, segregation, centrosomal maturation, mitotic spindle formation, and cytokinesis during mitosis. Their fundamental role in cell cycle regulation and aberrant expression in a broad range of malignancies prompted the development of small molecules that selectively inhibit their activity. Recent studies have revealed new insights into the cellular effects of Aurora kinase inhibition in the treatment of acute myeloid leukemia (AML). Moreover, early-phase clinical studies on AML have shown that these agents have therapeutic efficacy both alone and in combination with chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, ­disease, and regeneration. Physiol Rev 87(2):521–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arkenau HT et al (2011) A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies. Ann Oncol 23(5):1307–1313

    Google Scholar 

  • Bantscheff M et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25(9):1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J17 (11):3052–3065

    Article  Google Scholar 

  • Boss DS et al (2011) Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in ­patients with solid malignant tumors. Ann Oncol 22(2):431–437

    Article  CAS  PubMed  Google Scholar 

  • Briassouli P et al (2007) Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of Ikappa Balpha. Cancer Res 67(4):1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli P, Moll J (2008) Aurora kinases and their inhibitors: more than one target and one drug. Adv Exp Med Biol 610:54–73

    Article  CAS  PubMed  Google Scholar 

  • Carter TA et al (2005) Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A 102:11011–11016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106(1):21–34

    Article  CAS  PubMed  Google Scholar 

  • Chieffi P et al (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–333

    Article  CAS  PubMed  Google Scholar 

  • Cohen RB et al (2009a) A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res 15(21):6694–6701

    Google Scholar 

  • Cohen RB et al (2009b) A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res 15(21):6694–6701

    Google Scholar 

  • Cortes-F, Dombret JH, Schafhausen P, Brummendorf TH, Boissel N, Latini F, Capolongo L, ­Laffranchi B, Comis S (2009) Danusertib Hydrochloride (PHA-739358), a multi-kinase ­aurora inhibitor, elicits clinical benefit in advanced chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia. Blood (ASH Annual Meeting Abstracts) 114:864

    Google Scholar 

  • Crane R et al (2004) Aurora A, meiosis and mitosis. Biol Cell 96(3):215–229

    Article  CAS  PubMed  Google Scholar 

  • Crane R, Kloepfer A, Ruderman JV (2004) Requirements for the destruction of human Aurora-A. J Cell Sci 117(Pt 25):5975–5983

    Article  CAS  PubMed  Google Scholar 

  • Crosio C et al (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by ­mammalian Aurora kinases. Mol Cell Biol 22(3):874–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai Y et al (2008) Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood 112(3):793–804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dees EC, I.J., Burris H, Astsaturov IA, Stinchcombe T, Liu H, Galvin K, Venkatakrishnan K, Fingert HJ, Cohen RB (2010) Phase I study of the investigational drug MLN8237, an Aurora A kinase (AAK) inhibitor, in patients (pts) with solid tumors. J Clin Oncol 28:15s(15):abstr 3010

    Google Scholar 

  • Dees EC et al (2011) Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol 67(4):945–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ditchfield C et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161(2):267–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ducat D, Zheng Y (2004) Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res 301(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Fancelli D et al (2005) Potent and selective Aurora inhibitors identified by the expansion of a novel scaffold for protein kinase inhibition. J Med Chem 48(8):3080–3084

    Article  CAS  PubMed  Google Scholar 

  • Fancelli D et al (2006) 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49(24):7247–7251

    Article  CAS  PubMed  Google Scholar 

  • Farruggio DC, Townsley FM, Ruderman JV (1999) Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci U S A 96(13):7306–7311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiskus W et al (2008) Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin Cancer Res 14(19):6106–6615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fletcher GC et al (2011) ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther 10(1):126–137

    Article  CAS  PubMed  Google Scholar 

  • Foran JM (2008) Phase I and pharmacodynamic trial of AT9283, an aurora kinase inhibitor, in patients with refractory leukemia. In: ASCO Annual Meeting

    Google Scholar 

  • Friedberg J, M.D., Jung J, Persky DO, Lossos IS, Danaee H, Zhou X, Jane E, Leonard J, Bernstein SH (2011) Phase 2 Trial of Alisertib (MLN8237), An Investigational, Potent Inhibitor of Aurora A Kinase (AAK), in Patients (pts) with Aggressive B- and T-Cell Non-Hodgkin Lymphoma (NHL). Blood (Ash Annual Meeting Abstracts) 111(14):4211

    Google Scholar 

  • Fu J et al (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Gadea BB, Ruderman JV (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16(3):1305–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giles F et al (2006) MK-0457 is a novel Aurora Kinase and Janus Kinase 2 (JAK2) inhibitor with activity in transformed JAK2-positive myeloproliferative disease (MPD). ASH Annual Meeting Abstracts 108(11):4893

    Google Scholar 

  • Giles F et al (2006) MK-0457, a novel multikinase inhibitor, has activity in refractory aml, including transformed jak2 positive myeloproliferative disease (mpd), and in philadelphia-positive all. ASH Annual Meeting Abstracts 108(11):1967

    Google Scholar 

  • Giles FJ et al (2007) MK-0457, a novel kinase inhibitor, is active in patients with chronic ­myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109(2):500–502

    Article  CAS  PubMed  Google Scholar 

  • Glover DM et al (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105

    Article  CAS  PubMed  Google Scholar 

  • Goldberg S, Craig GE, Lister J, Kassis J, Pigneux A, Schiller GJ, Jung J, Leonard J, Fingert H, Westervelt P (2010) Phase 2 study of MLN8237, an investigational Aurora A Kinase (AAK) inhibitor in patients with acute myelogenous leukemia (AML) or myelodysplastic syndromes (MDS). In: Annual Meeting of American Society of Hematology

    Google Scholar 

  • Gontarewicz A et al (2008) Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood 111(8):4355–4364

    Article  CAS  PubMed  Google Scholar 

  • Goodall J, Squires MS, Lock V, Ravandi F, Kantarjian HM, Foran J, Thompson NT, Lyons JF (2008) Outcome of Aurora kinase inhibition of acute myeloid leukemia by AT9283 is ­dependent upon the presence or absence of mutations in type 1 oncogenic kinase signalling ­pathways. Blood (ASH Annual Meeting Abstracts) 112:1613

    Google Scholar 

  • Goto H et al (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–8530

    Article  CAS  PubMed  Google Scholar 

  • Harrington EA et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–267

    Article  CAS  PubMed  Google Scholar 

  • Hata T et al (2005) RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res ­65(7):2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Hauf S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161(2):281–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirota T et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114(5):585–598

    Article  CAS  PubMed  Google Scholar 

  • Hook KE et al (2012) An integrated genomic approach to identify predictive biomarkers of ­response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther 11(3):710–719

    Article  CAS  PubMed  Google Scholar 

  • Howard S et al (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52(2):379–388

    Article  CAS  PubMed  Google Scholar 

  • Huang XF et al (2008) Aurora kinase inhibitory VX-680 increases BAX/BCL-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 111(5):2854–2865

    Article  CAS  PubMed  Google Scholar 

  • Ikezoe T et al (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6(6):1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Jeng YM et al (2004) Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10(6):2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian HM, Sekeres MA, Vincent R et al (2010) Phase I study to assess the safety and tolerability of azd1152 in combination with low dose cytosine arabinoside in patients with acute myeloid leukemia (AML). ASH Annual Meeting Abstracts 116:656

    Google Scholar 

  • Katayama H et al (2004) Phosphorylation by Aurora kinase A induces MDM2-mediated destabilization and inhibition of p53. Nat Genet 36(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Kelly KR et al (2011) The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J Cell Mol Med 15(10):2057–2070

    Article  CAS  PubMed  Google Scholar 

  • Kelly KR et al (2012) Targeting aurora a kinase activity with the investigational agent alisertib increases the efficacy of cytarabine through a FOXO-dependent mechanism. Int J Cancer 131(11):2693–2703

    Google Scholar 

  • Kelly KR, Goy A, Berdeja JG, Reeder CB, McDonagh KT, Zhou X, Danaee H, Xiao H, Benaim Eand Shea TC (2011) Results from a phase 1 multicenter trial of alisertib (MLN8237)—an ­investigational Aurora A kinase inhibitor—in patients with advanced hematologic malignancies. ASH Annual Meeting Abstracts 118(118):4110

    Google Scholar 

  • Kelly KR, Goy A, Berdeja JG, Reeder CB, McDonagh KT, Zhou X, Danaee H, Xiao H, Benaim Eand Shea TC (2011) Results from a phase 1 multicenter trial of alisertib (MLN8237)—an ­investigational Aurora A kinase inhibitor—in patients with advanced hematologic malignancies. In: Proc Am Soc Hematol

    Google Scholar 

  • Kimura M et al (1999) Cell cycle-dependent expression and centrosome localization of a third ­human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–7340

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nakamura Satoki, Ono Takaaki, Sugimoto Yuya, Sahara Naohi, Shinjo Kaori, Shigeno Kazuyuki, Ohnishi Kazunori (2006) Analysis of aurora kinase expressions and cell cycle regulation by aurora-c in leukemia cells. Blood (ASH Annual Meeting Abstracts) 108:1366

    Google Scholar 

  • Liu Q, Ruderman JV (2006) Aurora A, mitotic entry, and spindle bipolarity. Proc Natl Acad Sci U S A 103(15):5811–5816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowenberg B et al (2011) Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood ­118(23):6030–6036

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu LY et al (2008) Aurora A is essential for early embryonic development and tumor suppression. J Biol Chem 283(46):31785–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manfredi MG et al (2011) Characterization of Alisertib (MLN8237), an investigational ­small-molecule inhibitor of Aurora A Kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17(24):7614–7624

    Google Scholar 

  • Marumoto T et al (2002) Roles of Aurora-A kinase in mitotic entry and G2 checkpoint in ­mammalian cells. Genes Cells 7(11):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Marumoto T et al (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278(51):51786–51795

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y et al (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92(3):370–3

    Article  CAS  PubMed  Google Scholar 

  • Monier K, Mouradian S, Sullivan KF (2007) DNA methylation promotes Aurora-B-driven ­phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 120(Pt 1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Moore AS et al (2010) Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 24(4):671–678

    Article  CAS  PubMed  Google Scholar 

  • Nair JS et al (2009) Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 20(8):2218–2228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouchi M et al (2004) BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279(19):19643–19648

    Article  CAS  PubMed  Google Scholar 

  • Pollard CE, Valentin JP, Hammond TG (2008) Strategies to reduce the risk of drug-induced QT interval prolongation: a pharmaceutical company perspective. Br J Pharmacol 154(7):1538–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pratz KW et al (2009).A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood 113(17):3938–3946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi W et al (2011) Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol 81(7):881–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiter R et al (2006) Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res 12(17):5136–5141

    Article  CAS  PubMed  Google Scholar 

  • Sarno S et al (2007) The novel aurora kinase inhibitor as703569 shows potent anti-tumor activity in acute myeloid leukemia (AML). ASH Annual Meeting Abstracts 110(11):915

    Google Scholar 

  • Sausville EA (2004) Aurora kinases dawn as cancer drug targets. Nat Med, 10(3):234–235

    Article  CAS  PubMed  Google Scholar 

  • Schnittger S et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Zhou H, White RA (1997) A putative serine/threonine kinase encoding gene BTAK on ­chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. ­Oncogene 14(18):2195–2200

    Article  CAS  PubMed  Google Scholar 

  • Severson AF et al (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the ­mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10(19):1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Shiotsu Y et al (2007) KW-2449, a novel multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora, suppresses the growth of aml both in vitro and in vivo. ASH Annual Meeting Abstracts 110(11):1832

    Google Scholar 

  • Shiotsu Y et al (2009) KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood ­114(8):1607–1617

    Article  CAS  PubMed  Google Scholar 

  • Shiotsu Y, Kiyoi Hitoshi, Ozeki Kazutaka, Umehara Hiroshi, Shimizu Makiko, Akinaga Shiro, Naoe Tomoki (2007) KW-2449, a novel multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora, suppresses the growth of aml both in vitro and in vivo. Blood (ASH Annual Meeting Abstracts) 110:1832

    Google Scholar 

  • Smith SL et al (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93(6):719–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonet A, Graux C, Maertens J, Hartog C-M (2008) Phase I, dose-escalation study of 2 dosing regimens of AS703569, an inhibitor of aurora and other kinases, administered orally in patients with advanced hematological malignancies. Blood (ASH Annual Meeting Abstracts) 112:2963

    Google Scholar 

  • Steeghs N et al (2009a) Phase I pharmacokinetic and pharmacodynamic study of the aurora ­kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol 27(30):5094–5101

    Google Scholar 

  • Steeghs N et al (2009b) Phase I pharmacokinetic and pharmacodynamic study of the aurora ­kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol 27(30):5094–5101

    Google Scholar 

  • Tsuboi K et al (2011) A Phase I study to assess the safety, pharmacokinetics and efficacy of barasertib (AZD1152), an Aurora B kinase inhibitor, in Japanese patients with advanced acute myeloid leukemia. Leuk Res 35(10):1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Ulisse S et al (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and ­tissues. Int J Cancer 119(2):275–282

    Article  CAS  PubMed  Google Scholar 

  • Vader G, Medema RH, Lens SM (2006) The chromosomal passenger complex: guiding Aurora-B through mitosis. J Cell Biol 173(6):833–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson RW et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13(12):3682–3688

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth ­arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110(6):2034–2040

    Article  CAS  PubMed  Google Scholar 

  • Yee KWL et al (2009) A phase i study of enmd-2076 in patients with relapsed or refractory leukemia. ASH Annual Meeting Abstracts 116:3307

    Google Scholar 

  • Zhou H et al (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20(2):189–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis J. Giles .

Editor information

Editors and Affiliations

Conclusion

Conclusion

Our understanding of the biology of Aurora kinases, their role in oncogenesis, and their suitability as anticancer targets has improved considerably over the past 10 years. Despite this, a number of important questions remain to be fully answered. Whether optimal therapeutic efficacy is achieved through the inhibition of Aurora A, Aurora B, or both kinases simultaneously is still unclear and is the subject of continuing research. Ongoing trials may provide new insights regarding whether there are any advantages to selectively targeting individual Aurora isoforms.

There are a large number of kinases in the human genome. Many of the kinase inhibitors in use in the clinic today were originally developed to inhibit a single kinase but their clinical utility has been attributed to the inhibition of other related kinases. It is likely therefore that some of the clinical efficacy observed with the AKIs currently under clinical investigation can be attributed to off-target kinase inhibition. MK-0457, for example, inhibits the activity of Aurora A and B along with BCR-ABL and FLT3. The clinical responses observed with MK-0457 treatment in highly refractory CML patients may be a consequence of off-target inhibition of BCR-ABL. Likewise, KW-2449 is a potent inhibitor of FLT-3 a factor that may account for some of the activity reported with this drug in AML.

It has yet to be determined whether the expression of Aurora A or Aurora B will predict response to treatment with AKIs. Indeed, this has not been clearly shown in clinical studies performed to date. It would appear that AML , a disease frequently characterized by the rapid proliferation of malignant cells appears to be a disease type associated with objective responses across various AKIs. While high Aurora A or B expression may not necessarily predict response, the expression of the oncogene MYC does appear to predict response to Aurora kinase B inhibitors at least in preclinical models (Hook et al. 2012).

As with many other targeted therapies that are in development the optimal use of AKIs may be in combination with currently available anticancer therapies. Indeed, several promising synergisms between AKIs and chemotherapy and radiotherapy have been demonstrated in vitro and in vivo. An attractive strategy is, combine Aurora inhibitors with tubulin-disrupting agents that arrest cells in mitosis, a stage in the cell cycle where Aurora kinases play a critical role. However, other potential combinations have been evaluated clinically and in preclinical models such as combinations with DNA-damaging agents and monoclonal antibodies.

Despite some of the limitations outlined above, a great deal of enthusiasm for further evaluation of AKIs in the clinic remains. Innovative preclinical science is providing rationale for the development of effective combination strategies that are now being evaluated in clinical trials in AML. It is hoped that these concerted efforts in Aurora kinase research will translate into novel anticancer strategies that will ultimately improve outcomes for patients with AML.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Kelly, K., Freeman, C., Giles, F. (2015). The Clinical Development of Aurora Kinase Inhibitors in Acute Myeloid Leukemia. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics