Skip to main content

Sedation in the Pediatric Intensive Care Unit: Current Practice in Europe

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

Of all the treatments that intensive care entails, the ones most commonly utilized are sedation and analgesia; yet many other treatments applied in intensive care are generally subject to far more scrutiny and debate. Sedation and analgesia are often seen as simply the means by which all other treatment can be facilitated; if only that were true and that sedation could be turned on and off at will—with no side effects, no tolerance, withdrawal, toxicity, and with no danger of producing neurologic and psychiatric effects well after the episode of intensive care has passed. So it is fortunate that there are enthusiastic workers in the specialty of pediatric intensive care who highlight the fact that this aspect of intensive care is far more complex than it first seems; and that advancing our understanding and critically revisiting entrenched habits in this field are also required for the conduct of responsible intensive care practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duhigg C. The power of habit—why we do what we do in life and business. New York: Random House; 2012.

    Google Scholar 

  2. Peitz GJ, Balas MC, Olsen KM, Pun BT, Ely EW. Top 10 myths regarding sedation and delirium in the ICU. Crit Care Med. 2013;41(9 Suppl 1):S46–56.

    PubMed  Google Scholar 

  3. Wolf AR, Jackman L. Analgesia and sedation after pediatric cardiac surgery. Paediatr Anaesth. 2011;21(5):567–76 [Review].

    PubMed  Google Scholar 

  4. Grant MJ, Balas MC, Curley MA. Defining sedation-related adverse events in the pediatric intensive care unit. Heart Lung. 2013;42(3):171–6.

    PubMed  PubMed Central  Google Scholar 

  5. Curley MA, Harris SK, Fraser KA, Johnson RA, Arnold JH. State behavioral scale: a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med. 2006;7(2):107–14.

    PubMed  PubMed Central  Google Scholar 

  6. Franck LS, Harris SK, Soetenga DJ, Amling JK, Curley MA. The Withdrawal Assessment Tool-1 (WAT-1): an assessment instrument for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Pediatr Crit Care Med. 2008;9(6):573–80.

    PubMed  PubMed Central  Google Scholar 

  7. Bradley BD, Green G, Ramsay T, Seely AJ. Impact of sedation and organ failure on continuous heart and respiratory rate variability monitoring in critically ill patients: a pilot study. Crit Care Med. 2013;41(2):433–44 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  8. Menon G, Boyle EM, Bergqvist LL, McIntosh N, Barton BA, Anand KJ. Morphine analgesia and gastrointestinal morbidity in preterm infants: secondary results from the NEOPAIN trial. Arch Dis Child Fetal Neonatal Ed. 2008;93(5):F362–7 [Multicenter Study Randomized Controlled Trial].

    PubMed  CAS  Google Scholar 

  9. Shehabi Y, Bellomo R, Reade MC, Bailey M, Bass F, Howe B, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med. 2012;186(8):724–31 [Multicenter Study Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  10. Shehabi Y, Chan L, Kadiman S, Alias A, Ismail WN, Tan MA, et al. Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. Intensive Care Med. 2013;39(5):910–8 [Research Support, Non-U.S. Gov’t].

    PubMed  PubMed Central  Google Scholar 

  11. Hill S. Pharmacokinetics of drug infusions. Cont Educ Anaesth Crit Care Pain. 2004;4(3):76–80.

    Google Scholar 

  12. Jenkins IA, Playfor SD, Bevan C, Davies G, Wolf AR. Current United Kingdom sedation practice in pediatric intensive care. Paediatr Anaesth. 2007;17(7):675–83.

    PubMed  Google Scholar 

  13. Hemstapat K, Le L, Edwards SR, Smith MT. Comparative studies of the neuro-excitatory behavioural effects of morphine-3-glucuronide and dynorphin a(2-17) following spinal and supraspinal routes of administration. Pharmacol Biochem Behav. 2009;93(4):498–505 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  14. Hemstapat K, Monteith GR, Smith D, Smith MT. Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of n-methyl-d-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg. 2003;97(2):494–505, table of contents [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  15. Spina SP, Ensom MH. Clinical pharmacokinetic monitoring of midazolam in critically ill patients. Pharmacotherapy. 2007;27(3):389–98 [Review].

    PubMed  CAS  Google Scholar 

  16. Segredo V, Caldwell JE, Wright PM, Sharma ML, Gruenke LD, Miller RD. Do the pharmacokinetics of vecuronium change during prolonged administration in critically ill patients? Br J Anaesth. 1998;80(6):715–9 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  17. Durrmeyer X, Vutskits L, Anand KJ, Rimensberger PC. Use of analgesic and sedative drugs in the NICU: Integrating clinical trials and laboratory data. Pediatr Res. 2010;67(2):117–27.

    PubMed  Google Scholar 

  18. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9 [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    PubMed  Google Scholar 

  20. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7 [Clinical Trial Randomized Controlled Trial].

    PubMed  CAS  Google Scholar 

  21. Gupta K, Gupta VK, Jayashree M, Singhi S. Randomized controlled trial of interrupted versus continuous sedative infusions in ventilated children. Pediatr Crit Care Med. 2012;13(2):131–5 [Randomized Controlled Trial].

    PubMed  Google Scholar 

  22. Kress JP, Hall JB. The changing landscape of ICU sedation. JAMA. 2012;308(19):2030–1 [Comment Editorial].

    PubMed  CAS  Google Scholar 

  23. Dale CR, Bryson CL, Fan VS, Maynard C, Yanez 3rd ND, Treggiari MM. A greater analgesia, sedation, delirium order set quality score is associated with a decreased duration of mechanical ventilation in cardiovascular surgery patients. Crit Care Med. 2013;41(11):2610–7.

    PubMed  CAS  Google Scholar 

  24. Deindl P, Unterasinger L, Kappler G, Werther T, Czaba C, Giordano V, et al. Successful implementation of a neonatal pain and sedation protocol at 2 NICUs. Pediatrics. 2013;132(1):e211–8.

    PubMed  Google Scholar 

  25. Le Guen M, Liu N, Bourgeois E, Chazot T, Sessler DI, Rouby JJ, et al. Automated sedation outperforms manual administration of propofol and remifentanil in critically ill patients with deep sedation: a randomized phase ii trial. Intensive Care Med. 2013;39(3):454–62.

    PubMed  CAS  Google Scholar 

  26. Kosarac B, Fox AA, Collard CD. Effect of genetic factors on opioid action. Curr Opin Anaesthesiol. 2009;22(4):476–82 [Review].

    PubMed  Google Scholar 

  27. Borgland SL. Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol. 2001;28(3):147–54.

    PubMed  CAS  Google Scholar 

  28. Anand KJ, Willson DF, Berger J, Harrison R, Meert KL, Zimmerman J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5):e1208–25 [Research Support, N.I.H., Extramural Review].

    PubMed  PubMed Central  Google Scholar 

  29. Crawford MW, Hickey C, Zaarour C, Howard A, Naser B. Development of acute opioid tolerance during infusion of remifentanil for pediatric scoliosis surgery. Anesth Analg. 2006;102(6):1662–7.

    PubMed  CAS  Google Scholar 

  30. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86(6):1307–11 [Comparative Study Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  31. Engelhardt T, Zaarour C, Naser B, Pehora C, de Ruiter J, Howard A, et al. Intraoperative low-dose ketamine does not prevent a remifentanil-induced increase in morphine requirement after pediatric scoliosis surgery. Anesth Analg. 2008;107(4):1170–5.

    PubMed  CAS  Google Scholar 

  32. Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, et al. Benzodiazepine versus nonbenzodiazepine-based sedation for mechanically ventilated, critically ill adults: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013;41(9 Suppl 1):S30–8.

    PubMed  CAS  Google Scholar 

  33. Jarman A, Duke G, Reade M, Casamento A. The association between sedation practices and duration of mechanical ventilation in intensive care. Anaesth Intensive Care. 2013;41(3):311–5.

    PubMed  Google Scholar 

  34. Hatch DJ. Propofol in paediatric intensive care. Br J Anaesth. 1997;79(3):274–5 [Comment Editorial].

    PubMed  CAS  Google Scholar 

  35. Martin PH, Murthy BV, Petros AJ. Metabolic, biochemical and haemodynamic effects of infusion of propofol for long-term sedation of children undergoing intensive care. Br J Anaesth. 1997;79(3):276–9 [Clinical Trial].

    PubMed  CAS  Google Scholar 

  36. Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: Five case reports. BMJ. 1992;305(6854):613–6 [Case Reports].

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusion. Anaesthesia. 1992;47(4):340–2.

    PubMed  CAS  Google Scholar 

  38. Wolf A, Weir P, Segar P, Stone J, Shield J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357(9256):606–7 [Case Reports Letter].

    PubMed  CAS  Google Scholar 

  39. Rowe K, Fletcher S. Sedation in the intensive care unit. Contin Educ Anaesth Crit Care Pain. 2008;8(2):50–5.

    Google Scholar 

  40. Pandharipande P, Shintani A, Peterson J, Pun BT, Wilkinson GR, Dittus RS, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.

    PubMed  CAS  Google Scholar 

  41. Smith HA, Boyd J, Fuchs DC, Melvin K, Berry P, Shintani A, et al. Diagnosing delirium in critically ill children: validity and reliability of the pediatric confusion assessment method for the intensive care unit. Crit Care Med. 2011;39(1):150–7.

    PubMed  PubMed Central  Google Scholar 

  42. Fonsmark L, Rasmussen YH, Carl P. Occurrence of withdrawal in critically ill sedated children. Crit Care Med. 1999;27(1):196–9.

    PubMed  CAS  Google Scholar 

  43. Koinig H, Marhofer P. S(+)-ketamine in paediatric anaesthesia. Paediatr Anaesth. 2003;13(3):185–7 [Editorial].

    PubMed  CAS  Google Scholar 

  44. Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, et al. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience. 2012;210:384–92 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Bhutta AT, Schmitz ML, Swearingen C, James LP, Wardbegnoche WL, Lindquist DM, et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 2012;13(3):328–37 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  46. Lahtinen P, Kokki H, Hakala T, Hynynen M. S(+)-ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99(5):1295–301, table of contents [Clinical Trial Randomized Controlled Trial].

    PubMed  CAS  Google Scholar 

  47. Laulin JP, Maurette P, Corcuff JB, Rivat C, Chauvin M, Simonnet G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg. 2002;94(5):1263–9.

    PubMed  CAS  Google Scholar 

  48. Filanovsky Y, Miller P, Kao J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM. 2010;12(2):154–7 [Review].

    PubMed  Google Scholar 

  49. Sehdev RS, Symmons DA, Kindl K. Ketamine for rapid sequence induction in patients with head injury in the emergency department. Emerg Med Australas. 2006;18(1):37–44 [Review].

    PubMed  Google Scholar 

  50. Albanese J, Arnaud S, Rey M, Thomachot L, Alliez B, Martin C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87(6):1328–34.

    PubMed  CAS  Google Scholar 

  51. Chang LC, Raty SR, Ortiz J, Bailard NS, Mathew SJ. The emerging use of ketamine for anesthesia and sedation in traumatic brain injuries. CNS Neurosci Ther. 2013;19(6):390–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Denmark TK, Crane HA, Brown L. Ketamine to avoid mechanical ventilation in severe pediatric asthma. J Emerg Med. 2006;30(2):163–6 [Case Reports].

    PubMed  Google Scholar 

  53. Jat KR, Chawla D. Ketamine for management of acute exacerbations of asthma in children. Cochrane Database Syst Rev. 2012;11:CD009293 [Review].

    PubMed  Google Scholar 

  54. Allen JY, Macias CG. The efficacy of ketamine in pediatric emergency department patients who present with acute severe asthma. Ann Emerg Med. 2005;46(1):43–50 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  55. Williams GD, Philip BM, Chu LF, Boltz MG, Kamra K, Terwey H, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105(6):1578–84, table of contents [Comparative Study Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  56. Sheth RD, Gidal BE. Refractory status epilepticus: response to ketamine. Neurology. 1998;51(6):1765–6 [Case Reports].

    PubMed  CAS  Google Scholar 

  57. Gaspard N, Foreman B, Judd LM, Brenton JN, Nathan BR, McCoy BM, et al. Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia. 2013;54(8):1498–503.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Wheeler DS, Clapp CR, Ponaman ML, Bsn HM, Poss WB. Isoflurane therapy for status asthmaticus in children: a case series and protocol. Pediatr Crit Care Med. 2000;1(1):55–9.

    PubMed  Google Scholar 

  59. Sackey PV, Martling CR, Nise G, Radell PJ. Ambient isoflurane pollution and isoflurane consumption during intensive care unit sedation with the anesthetic conserving device. Crit Care Med. 2005;33(3):585–90.

    PubMed  CAS  Google Scholar 

  60. Eifinger F, Hunseler C, Roth B, Vierzig A, Oberthuer A, Mehler K, et al. Observations on the effects of inhaled isoflurane in long-term sedation of critically ill children using a modified AnaConDa©-system. Klin Padiatr. 2013;225(4):206–11.

    PubMed  CAS  Google Scholar 

  61. Arnold JH, Truog RD, Molengraft JA. Tolerance to isoflurane during prolonged administration. Anesthesiology. 1993;78(5):985–8.

    PubMed  CAS  Google Scholar 

  62. Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth. 2005;15(10):879–85.

    PubMed  Google Scholar 

  63. Jung C, Granados M, Marsol P, Murat I, Gall O. Use of sevoflurane sedation by the AnaConDa device as an adjunct to extubation in a pediatric burn patient. Burns. 2008;34(1):136–8.

    PubMed  CAS  Google Scholar 

  64. Soukup J, Scharff K, Kubosch K, Pohl C, Bomplitz M, Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically ill patients. J Crit Care. 2009;24(4):535–44 [Review].

    PubMed  CAS  Google Scholar 

  65. Kirkland LL. Protecting both heart and brain: a noble goal for a noble gas. Crit Care Med. 2013;41(9):2228–9.

    PubMed  Google Scholar 

  66. Goto T, Nakata Y, Morita S. Will xenon be a stranger or a friend?: the cost, benefit, and future of xenon anesthesia. Anesthesiology. 2003;98(1):1–2.

    PubMed  Google Scholar 

  67. Rossaint R, Reyle-Hahn M, Schulte Am Esch J, Scholz J, Scherpereel P, Vallet B, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 2003;98(1):6–13.

    PubMed  CAS  Google Scholar 

  68. Bedi A, Murray JM, Dingley J, Stevenson MA, Fee JP. Use of xenon as a sedative for patients receiving critical care. Crit Care Med. 2003;31(10):2470–7 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  69. Hanss R, Bein B, Turowski P, Cavus E, Bauer M, Andretzke M, et al. The influence of xenon on regulation of the autonomic nervous system in patients at high risk of perioperative cardiac complications. Br J Anaesth. 2006;96(4):427–36.

    PubMed  CAS  Google Scholar 

  70. Dingley J, Tooley J, Porter H, Thoresen M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke. 2006;37(2):501–6.

    PubMed  CAS  Google Scholar 

  71. Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke. 2008;39(4):1307–13.

    PubMed  Google Scholar 

  72. Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–22.

    PubMed  CAS  Google Scholar 

  73. Arola OJ, Laitio RM, Roine RO, Gronlund J, Saraste A, Pietila M, et al. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med. 2013;41(9):2116–24.

    PubMed  CAS  Google Scholar 

  74. Lockwood GG, Franks NP, Downie NA, Taylor KM, Maze M. Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology. 2006;104(3):458–65.

    PubMed  Google Scholar 

  75. Jungwirth B, Gordan ML, Blobner M, Schmehl W, Kochs EF, Mackensen GB. Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology. 2006;104(4):770–6.

    PubMed  Google Scholar 

  76. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93(5):1345–9 [Review].

    PubMed  CAS  Google Scholar 

  77. Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1):13–21.

    CAS  Google Scholar 

  78. Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A. An alpha 2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Res. 1985;334(2):243–54 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  79. Kuraishi Y, Hirota N, Sato Y, Kaneko S, Satoh M, Takagi H. Noradrenergic inhibition of the release of substance p from the primary afferents in the rabbit spinal dorsal horn. Brain Res. 1985;359(1–2):177–82 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  80. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76(6):948–52 [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.].

    PubMed  CAS  Google Scholar 

  81. Tobias JD, Chrysostomou C. Dexmedetomidine: antiarrhythmic effects in the pediatric cardiac patient. Pediatr Cardiol. 2013;34(4):779–85 [Review].

    PubMed  Google Scholar 

  82. Bhana N, Goa KL, McClellan KJ. Dexmedetomidine. Drugs. 2000;59(2):263–8; discussion 269–270.

    PubMed  CAS  Google Scholar 

  83. Iirola T, Aantaa R, Laitio R, Kentala E, Lahtinen M, Wighton A, et al. Pharmacokinetics of prolonged infusion of high-dose dexmedetomidine in critically ill patients. Crit Care. 2011;15(5):R257 [Clinical Trial Research Support, Non-U.S. Gov’t].

    PubMed  PubMed Central  Google Scholar 

  84. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108(3):460–8 [Clinical Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  85. Potts AL, Larsson P, Eksborg S, Warman G, Lonnqvist PA, Anderson BJ. Clonidine disposition in children; a population analysis. Paediatr Anaesth. 2007;17(10):924–33 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  86. Ambrose C, Sale S, Howells R, Bevan C, Jenkins I, Weir P, et al. Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardiovascular stability. Br J Anaesth. 2000;84(6):794–6.

    PubMed  CAS  Google Scholar 

  87. Arenas-Lopez S, Riphagen S, Tibby SM, Durward A, Tomlin S, Davies G, et al. Use of oral clonidine for sedation in ventilated paediatric intensive care patients. Intensive Care Med. 2004;30(8):1625–9 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  88. Gamble C, Wolf A, Sinha I, Spowart C, Williamson P. The role of systematic reviews in pharmacovigilance planning and Clinical Trials Authorisation application: example from the SLEEPS trial. PLoS One. 2013;8(3):e51787 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the mends randomized controlled trial. JAMA. 2007;298(22):2644–53.

    PubMed  CAS  Google Scholar 

  90. Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  91. Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin JJ III, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e7–e10.

    Google Scholar 

  92. Devabhakthuni S, Pajoumand M, Williams C, Kufera JA, Watson K, Stein DM. Evaluation of dexmedetomidine: safety and clinical outcomes in critically ill trauma patients. J Trauma. 2011;71(5):1164–71.

    PubMed  CAS  Google Scholar 

  93. Gerlach AT, Dasta JF, Steinberg S, Martin LC, Cook CH. A new dosing protocol reduces dexmedetomidine-associated hypotension in critically ill surgical patients. J Crit Care. 2009;24(4):568–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Mann NS, Shinkle JM. Effect of clonidine on gastrointestinal transit time. Hepatogastroenterology. 1998;45(22):1023–5.

    PubMed  CAS  Google Scholar 

  95. Memis D, Dokmeci D, Karamanlioglu B, Turan A, Ture M. A comparison of the effect on gastric emptying of propofol or dexmedetomidine in critically ill patients: preliminary study. Eur J Anaesthesiol. 2006;23(8):700–4.

    PubMed  CAS  Google Scholar 

  96. Iirola T, Vilo S, Aantaa R, Wendelin-Saarenhovi M, Neuvonen PJ, Scheinin M, et al. Dexmedetomidine inhibits gastric emptying and oro-caecal transit in healthy volunteers. Br J Anaesth. 2011;106(4):522–7 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  97. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–60 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  98. Tobias JD, Berkenbosch JW. Sedation during mechanical ventilation in infants and children: dexmedetomidine versus midazolam. South Med J. 2004;97(5):451–5 [Clinical Trial Comparative Study Randomized Controlled Trial].

    PubMed  Google Scholar 

  99. Buck ML, Willson DF. Use of dexmedetomidine in the pediatric intensive care unit. Pharmacotherapy. 2008;28(1):51–7.

    PubMed  CAS  Google Scholar 

  100. Hosokawa K, Shime N, Kato Y, et al. Dexmedetomidine sedation in children after cardiac surgery. Pediatr Crit Care Med. 2010;11(1):39–43.

    Google Scholar 

  101. Su F, Nicolson SC, Zuppa AF. A dose-response study of dexmedetomidine administered as the primary sedative in infants following open heart surgery. Pediatr Crit Care Med. 2013;14(5):499–507.

    PubMed  PubMed Central  Google Scholar 

  102. Malviya S, Voepel-Lewis T, Tait AR, Merkel S, Tremper K, Naughton N. Depth of sedation in children undergoing computed tomography: validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth. 2002;88(2):241–5.

    PubMed  CAS  Google Scholar 

  103. Su F, Nicolson SC, Gastonguay MR, Barrett JS, Adamson PC, Kang DS, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110(5):1383–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Darnell C, Steiner J, Szmuk P, Sheeran P. Withdrawal from multiple sedative agent therapy in an infant: is dexmedetomidine the cause or the cure? Pediatr Crit Care Med. 2010;11(1):e1–3.

    PubMed  Google Scholar 

  105. Burbano NH, Otero AV, Berry DE, Orr RA, Munoz RA. Discontinuation of prolonged infusions of dexmedetomidine in critically ill children with heart disease. Intensive Care Med. 2012;38(2):300–7 [Research Support, N.I.H., Extramural].

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30(12):2188–96.

    PubMed  Google Scholar 

  107. Walker J, Maccallum M, Fischer C, Kopcha R, Saylors R, McCall J. Sedation using dexmedetomidine in pediatric burn patients. J Burn Care Res. 2006;27(2):206–10.

    PubMed  Google Scholar 

  108. Hammer GB, Philip BM, Schroeder AR, Rosen FS, Koltai PJ. Prolonged infusion of dexmedetomidine for sedation following tracheal resection. Paediatr Anaesth. 2005;15(7):616–20.

    PubMed  Google Scholar 

  109. Tobias JD. Dexmedetomidine: are tolerance and withdrawal going to be an issue with long-term infusions? Pediatr Crit Care Med. 2010;11(1):158–60.

    PubMed  Google Scholar 

  110. Tobias JD. Subcutaneous dexmedetomidine infusions to treat or prevent drug withdrawal in infants and children. J Opioid Manag. 2008;4(4):187–91.

    PubMed  Google Scholar 

  111. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. A preliminary report. Anaesthesia. 1989;44(3):222–6.

    PubMed  CAS  Google Scholar 

  112. Marik PE. Propofol: therapeutic indications and side-effects. Curr Pharm Des. 2004;10(29):3639–49.

    PubMed  CAS  Google Scholar 

  113. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8(6):491–9.

    PubMed  CAS  Google Scholar 

  114. Reed MD, Blumer JL. Propofol bashing: the time to stop is now! Crit Care Med. 1996;24(1):175–6.

    PubMed  CAS  Google Scholar 

  115. Reed MD, Yamashita TS, Marx CM, Myers CM, Blumer JL. A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient. Crit Care Med. 1996;24(9):1473–81.

    PubMed  CAS  Google Scholar 

  116. Cornfield DN, Tegtmeyer K, Nelson MD, Milla CE, Sweeney M. Continuous propofol infusion in 142 critically ill children. Pediatrics. 2002;110(6):1177–81.

    PubMed  Google Scholar 

  117. Withington DE, Decell MK, Al Ayed T. A case of propofol toxicity: further evidence for a causal mechanism. Paediatr Anaesth. 2004;14(6):505–8.

    PubMed  Google Scholar 

  118. Wolf AR, Potter F. Propofol infusion in children: when does an anesthetic tool become an intensive care liability? Paediatr Anaesth. 2004;14(6):435–8.

    PubMed  Google Scholar 

  119. Vanlander AV, Jorens PG, Smet J, De Paepe B, Verbrugghe W, Van den Eynden GG, et al. Inborn oxidative phosphorylation defect as risk factor for propofol infusion syndrome. Acta Anaesthesiol Scand. 2012;56(4):520–5 [Case Reports].

    PubMed  CAS  Google Scholar 

  120. Anonymous. Propofol (Diprivan) infusion: sedation in children aged 16 years or younger contraindicated. Curr Probl Pharmacovigil. 2001;27:10.

    Google Scholar 

  121. Wooltorton E. Propofol: contraindicated for sedation of pediatric intensive care patients. CMAJ. 2002;167(5):507.

    PubMed  PubMed Central  Google Scholar 

  122. Svensson ML, Lindberg L. The use of propofol sedation in a paediatric intensive care unit. Nurs Crit Care. 2012;17(4):198–203.

    PubMed  Google Scholar 

  123. Kumar MA, Urrutia VC, Thomas CE, Abou-Khaled KJ, Schwartzman RJ. The syndrome of irreversible acidosis after prolonged propofol infusion. Neurocrit Care. 2005;3(3):257–9.

    PubMed  Google Scholar 

  124. Eriksen J, Povey HM. A case of suspected non-neurosurgical adult fatal propofol infusion syndrome. Acta Anaesthesiol Scand. 2006;50(1):117–9.

    PubMed  CAS  Google Scholar 

  125. Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol. 2006;19(4):404–10.

    PubMed  Google Scholar 

  126. Liolios A, Guerit JM, Scholtes JL, Raftopoulos C, Hantson P. Propofol infusion syndrome associated with short-term large-dose infusion during surgical anesthesia in an adult. Anesth Analg. 2005;100(6):1804–6.

    PubMed  Google Scholar 

  127. Cremer OL, Moons KG, Bouman EA, Kruijswijk JE, de Smet AM, Kalkman CJ. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357(9250):117–8.

    PubMed  CAS  Google Scholar 

  128. Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, et al. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006;3(2):131–7.

    PubMed  PubMed Central  Google Scholar 

  129. Ernest D, French C. Propofol infusion syndrome—report of an adult fatality. Anaesth Intensive Care. 2003;31(3):316–9.

    PubMed  CAS  Google Scholar 

  130. Kang TM. Propofol infusion syndrome in critically ill patients. Ann Pharmacother. 2002;36(9):1453–6.

    PubMed  Google Scholar 

  131. Mijzen EJ, Jacobs B, Aslan A, Rodgers MG. Propofol infusion syndrome heralded by ECG changes. Neurocrit Care. 2012;17(2):260–4 [Case Reports].

    PubMed  CAS  Google Scholar 

  132. Murray DM, Thorne GC, Rigby-Jones AE, Tonucci D, Grimes S, Tooley MA, et al. Electroencephalograph variables, drug concentrations and sedation scores in children emerging from propofol infusion anaesthesia. Paediatr Anaesth. 2004;14(2):143–51.

    PubMed  Google Scholar 

  133. Al-Hashimi M, Scott SW, Thompson JP, Lambert DG. Opioids and immune modulation: more questions than answers. Br J Anaesth. 2013;111(1):80–8.

    PubMed  CAS  Google Scholar 

  134. Bidri M, Royer B, Averlant G, Bismuth G, Guillosson JJ, Arock M. Inhibition of mouse mast cell proliferation and proinflammatory mediator release by benzodiazepines. Immunopharmacology. 1999;43(1):75–86.

    PubMed  CAS  Google Scholar 

  135. Webster NR. Opioids and the immune system. Br J Anaesth. 1998;81(6):835–6.

    PubMed  CAS  Google Scholar 

  136. Platt M, Platt S, Royston D. Lymphocyte proliferation: dichotomy of effect of related anaesthetic agents. Br J Anaesth. 1986;58(1):132P.

    Google Scholar 

  137. Helmy SA, Al-Attiyah RJ. The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients. Anaesthesia. 2001;56(1):4–8.

    PubMed  CAS  Google Scholar 

  138. Massoco C, Palermo-Neto J. Effects of midazolam on equine innate immune response: a flow cytometric study. Vet Immunol Immunopathol. 2003;95(1–2):11–9 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  139. Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, et al. Propofol inhibits human neutrophil functions. Anesth Analg. 1998;87(3):695–700.

    PubMed  CAS  Google Scholar 

  140. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg. 1998;86(1):159–65.

    PubMed  CAS  Google Scholar 

  141. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, et al. The effects of clonidine and dexmedetomidine on human neutrophil functions. Anesth Analg. 1999;88(2):452–8.

    PubMed  CAS  Google Scholar 

  142. Sanders RD, Ma D, Brooks P, Maze M. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity. Br J Anaesth. 2008;101(5):597–609 [Review].

    PubMed  CAS  Google Scholar 

  143. Roze JC, Denizot S, Carbajal R, Ancel PY, Kaminski M, Arnaud C, et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: results from the EPIPAGE cohort. Arch Pediatr Adolesc Med. 2008;162(8):728–33.

    PubMed  Google Scholar 

  144. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  145. Batt J, dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med. 2013;187(3):238–46 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  146. Hund E. Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol. 2001;248(11):929–34 [Review].

    PubMed  CAS  Google Scholar 

  147. Tabarki B, Coffinieres A, Van Den Bergh P, Huault G, Landrieu P, Sebire G. Critical illness neuromuscular disease: clinical, electrophysiological, and prognostic aspects. Arch Dis Child. 2002;86(2):103–7 [Case Reports Review].

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Bolton CF, Young GB. Critical illness polyneuropathy. Curr Treat Options Neurol. 2000;2(6):489–98.

    PubMed  Google Scholar 

  149. Robinson BR, Berube M, Barr J, Riker R, Gelinas C. Psychometric analysis of subjective sedation scales in critically ill adults. Crit Care Med. 2013;41(9 Suppl 1):S16–29.

    PubMed  Google Scholar 

  150. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983–91.

    PubMed  Google Scholar 

  151. Riker RR, Fraser GL, Cox PM. Continuous infusion of haloperidol controls agitation in critically ill patients. Crit Care Med. 1994;22(3):433–40.

    PubMed  CAS  Google Scholar 

  152. Riker RR, Picard JT, Fraser GL. Prospective evaluation of the sedation-agitation scale for adult critically ill patients. Crit Care Med. 1999;27(7):1325–9.

    PubMed  CAS  Google Scholar 

  153. Ambuel B, Hamlett KW, Marx CM, Blumer JL. Assessing distress in pediatric intensive care environments: the comfort scale. J Pediatr Psychol. 1992;17(1):95–109.

    PubMed  CAS  Google Scholar 

  154. Marx CM, Smith PG, Lowrie LH, Hamlett KW, Ambuel B, Yamashita TS, et al. Optimal sedation of mechanically ventilated pediatric critical care patients. Crit Care Med. 1994;22(1):163–70.

    PubMed  CAS  Google Scholar 

  155. van Dijk M, de Boer JB, Koot HM, Tibboel D, Passchier J, Duivenvoorden HJ. The reliability and validity of the comfort scale as a postoperative pain instrument in 0 to 3-year-old infants. Pain. 2000;84(2–3):367–77.

    PubMed  Google Scholar 

  156. Carnevale FA, Razack S. An item analysis of the comfort scale in a pediatric intensive care unit. Pediatr Crit Care Med. 2002;3(2):177–80.

    PubMed  Google Scholar 

  157. Ista E, van Dijk M, Tibboel D, de Hoog M. Assessment of sedation levels in pediatric intensive care patients can be improved by using the comfort “behavior” scale. Pediatr Crit Care Med. 2005;6(1):58–63.

    PubMed  Google Scholar 

  158. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr. 1991;150(11):784–8.

    PubMed  CAS  Google Scholar 

  159. Hunseler C, Merkt V, Gerloff M, Eifinger F, Kribs A, Roth B. Assessing pain in ventilated newborns and infants: validation of the Hartwig score. Eur J Pediatr. 2011;170(7):837–43.

    PubMed  Google Scholar 

  160. Shields CH, Styadi-Park G, McCown MY, Creamer KM. Clinical utility of the bispectral index score when compared to the University of Michigan Sedation Scale in assessing the depth of outpatient pediatric sedation. Clin Pediatr. 2005;44(3):229–36 [Clinical Trial Comparative Study].

    Google Scholar 

  161. Aneja R, Heard AM, Fletcher JE, Heard CM. Sedation monitoring of children by the Bispectral Index in the pediatric intensive care unit. Pediatr Crit Care Med. 2003;4(1):60–4 [Comparative Study].

    PubMed  Google Scholar 

  162. Davidson AJ, McCann ME, Devavaram P, Auble SA, Sullivan LJ, Gillis JM, et al. The differences in the bispectral index between infants and children during emergence from anesthesia after circumcision surgery. Anesth Analg. 2001;93(2):326–30, 2nd contents page [Clinical Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  163. Playfor SD. The use of bispectral index monitors in paediatric intensive care. Crit Care. 2005;9(1):25–6 [Comment].

    PubMed  PubMed Central  Google Scholar 

  164. Triltsch AE, Nestmann G, Orawa H, Moshirzadeh M, Sander M, Grosse J, et al. Bispectral index versus COMFORT score to determine the level of sedation in paediatric intensive care unit patients: a prospective study. Crit Care. 2005;9(1):R9–17 [Clinical Trial].

    PubMed  PubMed Central  Google Scholar 

  165. Amigoni A, Mozzo E, Brugnaro L, Gentilomo C, Stritoni V, Michelin E, et al. Assessing sedation in a pediatric intensive care unit using comfort behavioural scale and bispectral index: these tools are different. Minerva Anestesiol. 2012;78(3):322–9.

    PubMed  CAS  Google Scholar 

  166. Berkenbosch JW, Fichter CR, Tobias JD. The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg. 2002;94(3):506–11, table of contents.

    PubMed  Google Scholar 

  167. Courtman SP, Wardurgh A, Petros AJ. Comparison of the bispectral index monitor with the COMFORT score in assessing level of sedation of critically ill children. Intensive Care Med. 2003;29(12):2239–46.

    PubMed  Google Scholar 

  168. Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003;97(2):488–91, table of contents.

    PubMed  CAS  Google Scholar 

  169. LeBlanc JM, Dasta JF, Pruchnicki MC, Gerlach A, Cook C. Bispectral index values, sedation-agitation scores, and plasma lorazepam concentrations in critically ill surgical patients. Am J Crit Care. 2012;21(2):99–105 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  170. Froom SR, Malan CA, Mecklenburgh JS, Price M, Chawathe MS, Hall JE, et al. Bispectral index asymmetry and COMFORT score in paediatric intensive care patients. Br J Anaesth. 2008;100(5):690–6.

    PubMed  CAS  Google Scholar 

  171. Fernandez Nievas IF, Spentzas T, Bogue CW. Snap II index: an alternative to the COMFORT scale in assessing the level of sedation in mechanically ventilated pediatric patients. J Intensive Care Med. 2013;29(4):225–8.

    Google Scholar 

  172. Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.

    PubMed  CAS  Google Scholar 

  173. Morandi A, Pandharipande P, Trabucchi M, Rozzini R, Mistraletti G, Trompeo AC, et al. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients. Intensive Care Med. 2008;34(10):1907–15.

    PubMed  CAS  Google Scholar 

  174. Abelha F, Luis C, Veiga D, Parente D, Fernandes V, Santos P, et al. Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit Care [Serial on the Internet]. 2013;17(5):R257. http://ccforum.com/content/17/5/R257

  175. Gehlbach BK, Chapotot F, Leproult R, Whitmore H, Poston J, Pohlman M, et al. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35(8):1105–14 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  PubMed Central  Google Scholar 

  176. Yoshitaka S, Egi M, Morimatsu H, Kanazawa T, Toda Y, Morita K. Perioperative plasma melatonin concentration in postoperative critically ill patients: its association with delirium. J Crit Care. 2013;28(3):236–42 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  177. Gunther ML, Jackson JC, Ely EW. Loss of IQ in the ICU brain injury without the insult. Med Hypotheses. 2007;69(6):1179–82.

    PubMed  Google Scholar 

  178. Svenningsen H, Egerod I, Videbech P, Christensen D, Frydenberg M, Tonnesen EK. Fluctuations in sedation levels may contribute to delirium in ICU patients. Acta Anaesthesiol Scand. 2013;57(3):288–93 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  179. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.

    PubMed  CAS  Google Scholar 

  180. Mac Sweeney R, Barber V, Page V, Ely EW, Perkins GD, Young JD, et al. A national survey of the management of delirium in UK intensive care units. QJM. 2010;103(4):243–51.

    PubMed  CAS  Google Scholar 

  181. Routsi C, Stamataki E, Nanas S, Psachoulia C, Stathopoulos A, Koroneos A, et al. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4.

    PubMed  CAS  Google Scholar 

  182. Cotton BA, Girard TD, Ely EW. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4. Shock. United States 2007. p. 338; author reply 339.

    Google Scholar 

  183. Pandharipande PP, Morandi A, Adams JR, Girard TD, Thompson JL, Shintani AK, et al. Plasma tryptophan and tyrosine levels are independent risk factors for delirium in critically ill patients. Intensive Care Med. 2009;35(11):1886–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.

    PubMed  PubMed Central  Google Scholar 

  185. Sikich N, Lerman J. Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology. 2004;100(5):1138–45 [Validation Studies].

    PubMed  Google Scholar 

  186. Turkel SB, Trzepacz PT, Tavare CJ. Comparing symptoms of delirium in adults and children. Psychosomatics. 2006;47(4):320–4 [Comparative Study].

    PubMed  Google Scholar 

  187. Schieveld JN, Leroy PL, van Os J, Nicolai J, Vos GD, Leentjens AF. Pediatric delirium in critical illness: phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive Care Med. 2007;33(6):1033–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Turkel SB, Jacobson JR, Tavare CJ. The diagnosis and management of delirium in infancy. J Child Adolesc Psychopharmacol. 2013;23(5):352–6.

    PubMed  CAS  Google Scholar 

  189. Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306 [Consensus Development Conference Practice Guideline Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  190. Page V, Ely E, Gates S, Xiao B, Alce T, Shintani A, et al. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2013;1(7):515–23.

    PubMed  CAS  Google Scholar 

  191. van Eijk MM, Roes KC, Honing ML, Kuiper MA, Karakus A, van der Jagt M, et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet. 2010;376(9755):1829–37 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  192. Arnold JH, Truog RD, Orav EJ, Scavone JM, Hershenson MB. Tolerance and dependence in neonates sedated with fentanyl during extracorporeal membrane oxygenation. Anesthesiology. 1990;73(6):1136–40.

    PubMed  CAS  Google Scholar 

  193. Jenkins IA. Tolerance and addiction; the patient, the parent or the clinician? Paediatr Anaesth. 2011;21(7):794–9 [Review].

    PubMed  Google Scholar 

  194. Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med. 2000;28(6):2122–32.

    PubMed  CAS  Google Scholar 

  195. Ypsilantis P, Mikroulis D, Politou M, Tsoukali H, Pitiakoudis M, Didilis V, et al. Tolerance to propofol’s sedative effect in mechanically ventilated rabbits. Anesth Analg. 2006;103(2):359–65.

    PubMed  CAS  Google Scholar 

  196. Cunliffe M, McArthur L, Dooley F. Managing sedation withdrawal in children who undergo prolonged PICU admission after discharge to the ward. Paediatr Anaesth. 2004;14(4):293–8 [Case Reports Review].

    PubMed  CAS  Google Scholar 

  197. Ista E, van Dijk M, Gischler S, de Leeuw M, Poley MJ, Tibboel D. Weaning of opioids and benzodiazepines at home after critical illness in infants: a cost-effective approach. J Opioid Manag. 2010;6(1):55–62 [Comparative Study].

    PubMed  Google Scholar 

  198. Greenberg M, Sauberan J. Clonidine withdrawal in a 3 month old premature male infant. Internet J Pediatr Neonatol. 2009. http://ispub.com/IJPN/10/1/8312.

  199. Bachiocco V, Lorenzini L, Baroncini S. Severe withdrawal syndrome in three newborns subjected to continuous opioid infusion and seizure activity dependent on brain hypoxia—ischemia. A possible link. Paediatr Anaesth. 2006;16(10):1057–62.

    PubMed  Google Scholar 

  200. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93(2):409–17.

    PubMed  CAS  Google Scholar 

  201. Katz R, Kelly HW, Hsi A. Prospective study on the occurrence of withdrawal in critically ill children who receive fentanyl by continuous infusion. Crit Care Med. 1994;22(5):763–7 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  202. Smith HA, Fuchs DC, Pandharipande PP, Barr FE, Ely EW. Delirium: an emerging frontier in the management of critically ill children. Anesthesiol Clin. 2011;29(4):729–50.

    PubMed  Google Scholar 

  203. Finnegan LP, Connaughton Jr JF, Kron RE, Emich JP. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2(1–2):141–58.

    PubMed  CAS  Google Scholar 

  204. Ista E, van Dijk M, Gamel C, Tibboel D, de Hoog M. Withdrawal symptoms in critically ill children after long-term administration of sedatives and/or analgesics: a first evaluation. Crit Care Med. 2008;36(8):2427–32.

    PubMed  CAS  Google Scholar 

  205. Ista E, van Dijk M, de Hoog M, Tibboel D, Duivenvoorden HJ. Construction of the Sophia Observation withdrawal Symptoms-scale (SOS) for critically ill children. Intensive Care Med. 2009;35(6):1075–81.

    PubMed  Google Scholar 

  206. Franck LS, Scoppettuolo LA, Wypij D, Curley MA. Validity and generalizability of the Withdrawal Assessment Tool-1 (WAT-1) for monitoring iatrogenic withdrawal syndrome in pediatric patients. Pain. 2012;153(1):142–8 [Validation Studies].

    PubMed  PubMed Central  Google Scholar 

  207. Ista E, de Hoog M, Tibboel D, Duivenvoorden HJ, van Dijk M. Psychometric evaluation of the Sophia observation withdrawal symptoms scale in critically ill children. Pediatr Crit Care Med. 2013;14(8):761–9.

    PubMed  Google Scholar 

  208. Mazurier E, Cambonie G, Barbotte E, Grare A, Pinzani V, Picaud JC. Comparison of chlorpromazine versus morphine hydrochloride for treatment of neonatal abstinence syndrome. Acta Paediatr. 2008;97(10):1358–61.

    PubMed  CAS  Google Scholar 

  209. Wischmeyer PE, Johnson BR, Wilson JE, Dingmann C, Bachman HM, Roller E, et al. A survey of propofol abuse in academic anesthesia programs. Anesth Analg. 2007;105(4):1066–71, table of contents.

    PubMed  CAS  Google Scholar 

  210. Wilson C, Canning P, Caravati EM. The abuse potential of propofol. Clin Toxicol. 2010;48(3):165–70.

    CAS  Google Scholar 

  211. Zacny JP, Lichtor JL, Thompson W, Apfelbaum JL. Propofol at a subanesthetic dose may have abuse potential in healthy volunteers. Anesth Analg. 1993;77(3):544–52.

    PubMed  CAS  Google Scholar 

  212. Berge KH, Seppala MD, Lanier WL. The anesthesiology community’s approach to opioid- and anesthetic-abusing personnel: time to change course. Anesthesiology. 2008;109(5):762–4.

    PubMed  Google Scholar 

  213. McAuliffe PF, Gold MS, Bajpai L, Merves ML, Frost-Pineda K, Pomm RM, et al. Second-hand exposure to aerosolized intravenous anesthetics propofol and fentanyl may cause sensitization and subsequent opiate addiction among anesthesiologists and surgeons. Med Hypotheses. 2006;66(5):874–82.

    PubMed  CAS  Google Scholar 

  214. Li KY, Xiao C, Xiong M, Delphin E, Ye JH. Nanomolar propofol stimulates glutamate transmission to dopamine neurons: a possible mechanism of abuse potential? J Pharmacol Exp Ther. 2008;325(1):165–74.

    PubMed  CAS  Google Scholar 

  215. Joshi ST, editor. H.L. Mencken on religion. Amherst: Prometheus Books; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Jenkins M.B.B.S., F.R.C.A., F.R.C.P.E., F.F.I.C.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, I.A. (2015). Sedation in the Pediatric Intensive Care Unit: Current Practice in Europe. In: Mason, K. (eds) Pediatric Sedation Outside of the Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1390-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1390-9_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1389-3

  • Online ISBN: 978-1-4939-1390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics