Skip to main content

Sedation in the Pediatric Intensive Care Unit: Challenges, Outcomes, and Future Strategies in the United States

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room
  • 2310 Accesses

Abstract

Sedation and analgesia are required on a daily basis for infants and children in the pediatric intensive care unit (PICU). Regardless of the patient’s age, cognitive level, underlying medical condition, or comorbid conditions, various factors may result in agitation, anxiety, and pain during the PICU process. One of the challenges of the PICU is the variability that is presented in patient type (age, weight, comorbid conditions, acute illness), procedure type and duration, and location (in the PICU versus off-site). The procedures may be brief (burn dressing changes, placement of central venous or arterial cannulae) or prolonged (mechanical ventilation) as well as non-painful requiring only sedation (imaging) or painful requiring both sedation and analgesia. When considering the patient who requires mechanical ventilation, the need for procedural sedation may last for days or even weeks as children may require prolonged sedation to overcome the pain and anxiety associated with the presence of an endotracheal tube and the requirement for ongoing mechanical ventilation. The pain and anxiety may be further magnified by psychological factors including periodic separation from parents, disruption of the day–night cycle and alterations of normal sleep patterns, unfamiliar people, the noise of imposing machines and monitoring devices, fear of death, and loss of self-control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendelsohn AB, Belle SH, Fischhoff B, et al. How patients feel about prolonged mechanical ventilation 1 yr later. Crit Care Med. 2002;30:1439–45.

    PubMed  Google Scholar 

  2. Practice guidelines for management of the difficult airway. An updated report by the American Society of Anesthesiologists task force on management of the difficult airway. Anesthesiology. 2013;118:251–70.

    Google Scholar 

  3. Mallampati SR, Gatt SP, Gugino LD, et al. A clinical sign to predict difficult tracheal intubation: a prospective study. Can Anaesth Soc J. 1985;32(4):429–34.

    PubMed  CAS  Google Scholar 

  4. Practice guidelines for sedation and analgesia by non-anesthesiologists: a report by the American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Anesthesiology. 1996;84:459–71.

    Google Scholar 

  5. Malviya S, Voepel-Lewis T, Tait AR. Adverse events and risk factors associated with the sedation of children by non-anesthesiologists. Anesth Analg. 1997;85:1207–13.

    PubMed  CAS  Google Scholar 

  6. Keidan I, Gozal D, Minuskin T, et al. The effect of fasting practice on sedation with chloral hydrate. Pediatr Emerg Care. 2004;20:805–7.

    PubMed  Google Scholar 

  7. Treston G. Prolonged pre-procedure fasting time is unnecessary when using titrated intravenous ketamine for paediatric procedural sedation. Emerg Med Australas. 2004;16:145–50.

    PubMed  Google Scholar 

  8. Mace SE, Brown LA, Francis L, et al. Clinical policy : Critical issues in the sedation of pediatric patients in the emergency department. Ann Emerg Med. 2008;51:378–99.

    PubMed  Google Scholar 

  9. Gottumukkala R, Street M, Fitzpatrick M, Tatineny P, Duncan JR. Improving team performance during the preprocedure time-out in pediatric interventional radiology. Jt Comm J Qual Patient Saf. 2012;38:387–494.

    PubMed  Google Scholar 

  10. American Academy of Pediatrics and the American Academy of Pediatric Dentistry Work Group on Sedation. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics 2006;118:2587–602.

    Google Scholar 

  11. American Society of Anesthesiologists. Standards for basic anesthetic monitoring. 2010. http://www.asahq.org/For-Members/~/media/For Members/documents/Standards Guidelines Stmts/Basic Anesthetic Monitoring 2011.ashx.

  12. Cote CJ, Notterman DA, Karl HW, et al. Adverse sedation events in pediatrics: a critical incident analysis of contributing factors. Pediatrics. 2000;105:805–14.

    PubMed  CAS  Google Scholar 

  13. Hart LS, Berns SD, Houck CS, et al. The value of end-tidal CO2 monitoring when comparing three methods of conscious sedation for children undergoing painful procedures in the emergency department. Pediatr Emerg Care. 1997;13:189–93.

    PubMed  CAS  Google Scholar 

  14. Tobias JD. End-tidal carbon dioxide monitoring during sedation with a combination of midazolam and ketamine for children undergoing painful, invasive procedures. Pediatr Emerg Care. 1999;15:173–5.

    PubMed  CAS  Google Scholar 

  15. Ambuel B, Hamlett KW, Marx CM, Blumer JL. Assessing distress in pediatric intensive care environments: the COMFORT scale. J Pediatr Psychol. 1992;17:95–109.

    PubMed  CAS  Google Scholar 

  16. Crain N, Slonim A, Pollack MM. Assessing sedation in the pediatric intensive care by using BIS and COMFORT scale. Pediatr Crit Care Med. 2002;3:11–4.

    PubMed  Google Scholar 

  17. Ista E, van Dijk M, Tibboel D, de Hoog M. Assessment of sedation levels in pediatric intensive care unit patients can be improved by using the COMFORT “behavior” scale. Pediatr Crit Care Med. 2005;6:58–63.

    PubMed  Google Scholar 

  18. Simmons LE, Riker RR, Prato BS, Fraser GL. Assessing sedation during intensive care unit mechanical ventilation with the Bispectral Index and Sedation-Agitation Scale. Crit Care Med. 1999;27:1499–504.

    PubMed  CAS  Google Scholar 

  19. Ramsay M, Savage TM, Simpson ER, et al. Controlled sedation with aphalaxone-alphadone. BMJ. 1974;2:656–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr. 1991;150:784–8.

    PubMed  CAS  Google Scholar 

  21. Chernik DA, Gillings D, Laine H, et al. Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol. 1992;12:43–8.

    PubMed  CAS  Google Scholar 

  22. Macnab AJ, Levine M, Glick N, et al. A research tool for measurement of recovery from sedation: the Vancouver Sedative Recovery Scale. J Pediatr Surg. 1991;26:1263–7.

    PubMed  CAS  Google Scholar 

  23. Malviya S, Voepel-Lewis T, Tait AR, et al. Depth of sedation in children undergoing computed tomography: validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth. 2002;88:241–5.

    PubMed  CAS  Google Scholar 

  24. Flaishon RI, Windsor A, Sigl J, Sebel PS. Recovery of consciousness after thiopental or propofol. Bispectral index and isolated forearm technique. Anesthesiology. 1997;86:613–9.

    PubMed  CAS  Google Scholar 

  25. Sebel PS, Lang E, Rampil IJ, White PF, Cork R, Jopling M, Smith NT, Glass PS, Manberg P. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg. 1997;84:891–9.

    PubMed  CAS  Google Scholar 

  26. Gill M, Green SM, Krauss B. A study of the Bispectral index monitor during procedural sedation and analgesia in the Emergency Department. Ann Emerg Med. 2003;41:234–41.

    PubMed  Google Scholar 

  27. Brown McDermott N, VanSickle T, Motas D, Friesen RH. Validation of the Bispectral Index monitor during conscious and deep sedation in children. Anesth Analg. 2003;97:39–43.

    Google Scholar 

  28. Motas D, Brown McDermott N, VanSickle T, Friesen RH. Depth of consciousness and deep sedation attained in children as administered by nonanesthesiologists in a children’s hospital. Pediatr Anaesth. 2004;14:256–9.

    Google Scholar 

  29. Berkenbosch JW, Fichter CR, Tobias JD. The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg. 2002;94:506–11.

    PubMed  Google Scholar 

  30. De Deyne C, Struys M, Decruyenaere J, Creupelandt J, Hoste E, Colardyn F. Use of continuous bispectral EEG monitoring to assess depth of sedation in ICU patients. Intensive Care Med. 1998;24:1294–8.

    PubMed  Google Scholar 

  31. Aneja R, Heard AMB, Fletcher JE, Heard CMB. Sedation monitoring of children by the Bispectral Index in the pediatric intensive care unit. Pediatr Crit Care Med. 2003;4:60–4.

    PubMed  Google Scholar 

  32. Arbour RB. Using the bispectral index to assess arousal response in a patient with neuromuscular blockade. Am J Crit Care. 2000;9:383–7.

    PubMed  CAS  Google Scholar 

  33. Courtman SP, Wardugh A, Petros AJ. Comparison of the bispectral index monitor with the COMFORT score in assessing level of sedation of critically ill children. Intensive Care Med. 2003;29:2239–46.

    PubMed  Google Scholar 

  34. Vivien B, Di Maria S, Ouattara A, Langeron O, Coirat P, Riou B. Overestimation of bispectral index in sedative intensive care unit patients revealed by administration of muscle relaxant. Anesthesiology. 2003;99:9–17.

    PubMed  Google Scholar 

  35. Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The Bispectral index declines during neuromuscular blockade in fully awake persons. Anesth Analg. 2003;97:488–91.

    PubMed  CAS  Google Scholar 

  36. Goto T, Nakata Y, Saito H, et al. Bispectral analysis of the electroencephalogram does not predict responsiveness to verbal command in patients emerging from xenon anesthesia. Br J Anaesth. 2000;85:359–63.

    PubMed  CAS  Google Scholar 

  37. Barr G, Jakobsson G, Owall A, Anderson RE. Nitrous oxide does not alter bispectral index: study with nitrous oxide as sole agent and as an adjunct to IV anaesthesia. Br J Anaesth. 1999;82:827–30.

    PubMed  CAS  Google Scholar 

  38. Lallemand MA, Lentschener C, Mazoit JX, Bonnichon P, Manceau I, Ozier Y. Bispectral index changes following etomidate induction of general anaesthesia and orotracheal intubation. Br J Anaesth. 2003;91:341–6.

    PubMed  CAS  Google Scholar 

  39. Tobias JD, Grindstaff R. Bispectral index monitoring during the administration of neuromuscular blocking agents in the Pediatric ICU patient. J Intensive Care Med. 2005;20:233–7.

    PubMed  Google Scholar 

  40. Grindstaff R, Tobias JD. Applications of bispectral index monitoring in the pediatric intensive care unit. J Intensive Care Med. 2004;19:111–6.

    PubMed  Google Scholar 

  41. Tobias JD. Monitoring the depth of sedation in the pediatric ICU patient: where are we, or more importantly, where are our patients. Pediatr Crit Care Med. 2005;6:715–8.

    PubMed  Google Scholar 

  42. Tobias JD, Berkenbosch JW. Tolerance during sedation in a Pediatric ICU patient: effects on the BIS monitor. J Clin Anesth. 2001;13:122–4.

    PubMed  CAS  Google Scholar 

  43. Volles DF, McGory R. Pharmacokinetic considerations. Crit Care Clin. 1999;15:55–7.

    PubMed  CAS  Google Scholar 

  44. Buck ML, Blumer JL. Opioids and other analgesics: adverse effects in the intensive care unit. Crit Care Clin. 1991;7:615–37.

    PubMed  CAS  Google Scholar 

  45. Reed MD, Blumer JL. Therapeutic drug monitoring in the pediatric intensive care unit. Pediatr Clin North Am. 1994;41:1227–43.

    PubMed  CAS  Google Scholar 

  46. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31:1952–8.

    PubMed  Google Scholar 

  47. Chua MV, Tsueda K, Doufas AG. Midazolam causes less sedation in volunteers with red hair. Can J Anaesth. 2004;51:25–30.

    PubMed  Google Scholar 

  48. Katz R, Kelly HW. Pharmacokinetics of continuous infusions of fentanyl in critically ill children. Crit Care Med. 1993;21:995–1000.

    PubMed  CAS  Google Scholar 

  49. Cohen M, Sadhasivam S, Vinks AA. Pharmacogenetics in perioperative medicine. Curr Opin Anaesthesiol. 2012;25:419–27.

    PubMed  CAS  Google Scholar 

  50. Hajj A, Khabbaz L, Laplanche JL, Peoc’h K. Pharmacogenetics of opiates in clinical practice: the visible tip of the iceberg. Pharmacogenomics. 2013;14:575–85.

    PubMed  CAS  Google Scholar 

  51. De Jonghe B, Bastuji-Garin S, Fangio P, et al. Sedation algorithm in critically ill patients without acute brain injury. Crit Care Med. 2005;33:120–7.

    PubMed  Google Scholar 

  52. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342:1471–7.

    PubMed  CAS  Google Scholar 

  53. Chanques G, Kress JP, Pohlman A, Patel S, Poston J, Jaber S, Hall JB. Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med. 2013;41:2177–87.

    PubMed  Google Scholar 

  54. Anand KJS, Hansen DD, Hickey PR. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73:661–70.

    PubMed  CAS  Google Scholar 

  55. Anand KJS, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med. 1992;326:1–9.

    PubMed  CAS  Google Scholar 

  56. Hansen-Flaschen JH, Brazinsky S, Basile C, Lanken PN. Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure. JAMA. 1991;266:2870–5.

    PubMed  CAS  Google Scholar 

  57. Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. Br Med J. 1989;298:1277–80.

    CAS  Google Scholar 

  58. Tobias JD. Therapeutic applications and uses of inhalational anesthesia in the pediatric intensive care unit. Pediatr Crit Care Med. 2008;9:169–79.

    PubMed  Google Scholar 

  59. Meiser A, Sirtl C, Bellgardt M, et al. Desflurane compared with propofol for postoperative sedation in the intensive care unit. Br J Anaesth. 2003;90:273–80.

    PubMed  CAS  Google Scholar 

  60. Bedi A, Murray JM, Dingley J, Stevenson MA, Fee JPH. Use of xenon as a sedative for patients receiving critical care. Crit Care Med. 2003;31:2470–7.

    PubMed  CAS  Google Scholar 

  61. Satoh H, Gillette JR, Takemura T, et al. Investigation of the immunological basis of halothane-induced hepatotoxicity. AdvExp Med Biol. 1986;197:657–773.

    CAS  Google Scholar 

  62. Kenna JG, Neuberger J, Williams R. Evidence for expression in human liver of halothane-induced neoantigens recognized by antibodies in sera from patients with halothane hepatitis. Hepatology. 1988;8:1635–41.

    PubMed  CAS  Google Scholar 

  63. Morray JP, Geiduschek J, Ramamoorthy C, et al. Anesthesia-related cardiac arrest in children: initial findings of the POCA registry. Anesthesiology. 2000;93:6–14.

    PubMed  CAS  Google Scholar 

  64. Bhanaker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105:344–50.

    Google Scholar 

  65. Fan SZ, Lin YW, Chang WS, Tang CS. An evaluation of the contributions by fresh gas flow rate, carbon dioxide concentration and desflurane partial pressure to carbon monoxide concentration during low fresh gas flows to a circle anaesthetic breathing system. Eur J Anaesthesiol. 2008;25:620–6.

    PubMed  Google Scholar 

  66. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology. 1993;79:444–53.

    PubMed  CAS  Google Scholar 

  67. Adams RW, Cucchiara RF, Gronert GA, Messick JM, Michenfelder JD. Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology. 1981;54:97–9.

    PubMed  CAS  Google Scholar 

  68. Drummond JC, Todd MM, Scheller MS, Shapiro HM. A comparison of the direct cerebral vasodilating potencies of halothane and isoflurane in the New Zealand White Rabbit. Anesthesiology. 1986;65:462–7.

    PubMed  CAS  Google Scholar 

  69. Reilly CS, Wood AJJ, Koshakji RP, Wood M. The effect of halothane on drug disposition: Contribution of changes in intrinsic drug metabolizing capacity and hepatic blood flow. Anesthesiology. 1985;63:70–6.

    PubMed  CAS  Google Scholar 

  70. Arnold JH, Truog RD, Rice SA. Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg. 1993;76:520–6.

    PubMed  CAS  Google Scholar 

  71. Sackey P, Martling CR, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the Anesthetic Conserving Device. Crit Care Med. 2004;32:2241–6.

    PubMed  CAS  Google Scholar 

  72. Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered the “AnaConDa®”. Pediatr Anaesth. 2005;15:879–85.

    Google Scholar 

  73. Selander D, Curelaru I, Stefansson T. Local discomfort and thrombophlebitis following intravenous injection of diazepam. A comparison between a glycerol-water solution and a lipid emulsion. Acta Anaesthesiol Scand. 1981;25:516–8.

    PubMed  CAS  Google Scholar 

  74. Forrest P, Galletly DC. A double-blind comparative study of three formulations of diazepam in volunteers. Anaesth Intensive Care. 1988;16:158–63.

    PubMed  CAS  Google Scholar 

  75. Reves JG, Fragan RJ, Vinik R, et al. Midazolam: pharmacology and uses. Anesthesiology. 1985;62:310–7.

    PubMed  CAS  Google Scholar 

  76. Lloyd-Thomas AR, Booker PD. Infusion of midazolam in paediatric patients after cardiac surgery. Br J Anaesth. 1986;58:1109–15.

    PubMed  CAS  Google Scholar 

  77. Silvasi DL, Rosen DA, Rosen KR. Continuous intravenous midazolam infusion for sedation in the pediatric intensive care unit. Anesth Analg. 1988;67:286–8.

    PubMed  CAS  Google Scholar 

  78. Rosen DA, Rosen KR. Midazolam for sedation in the paediatric intensive care unit. Intensive Care Med. 1991;17:S15–9.

    PubMed  Google Scholar 

  79. Jacqz-Algrain E, Daoud P, Burtin P, Desplanques L, Beaufils F. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344:646–50.

    Google Scholar 

  80. Beebe DS, Belani KG, Chang P, et al. Effectiveness of preoperative sedation with rectal midazolam, ketamine, or their combination in young children. Anesth Analg. 1992;75:880–4.

    PubMed  CAS  Google Scholar 

  81. McMillian CO, Spahr-Schopfer IA, Sikich N, et al. Premedication of children with oral midazolam. Can J Anaesth. 1992;39:545–50.

    Google Scholar 

  82. Karl HW, Rosenberger JL, Larach MG, Ruffle JM. Transmucosal administration of midazolam for premedication of pediatric patients: comparison of the nasal and sublingual routes. Anesthesiology. 1993;78:885–91.

    PubMed  CAS  Google Scholar 

  83. Theroux MC, West DW, Cordry DH, et al. Efficacy of midazolam in facilitating suturing of lacerations in preschool children in the emergency department. Pediatrics. 1993;91:624–7.

    PubMed  CAS  Google Scholar 

  84. Tobias JD. Subcutaneous administration of fentanyl and midazolam to prevent withdrawal following prolonged sedation in children. Crit Care Med. 1999;27:2262–5.

    PubMed  CAS  Google Scholar 

  85. Cote CJ, Cohen IT, Suresh S, et al. A comparison of three doses of a commercially prepared oral midazolam syrup in children. Anesth Analg. 2002;94:37–43.

    PubMed  CAS  Google Scholar 

  86. Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet. 1995;346:145–7.

    PubMed  CAS  Google Scholar 

  87. Trouvin JH, Farinotti R, Haberer JP, et al. Pharmacokinetics of midazolam in anesthetized cirrhotic patients. Br J Anaesth. 1988;60:762–7.

    PubMed  CAS  Google Scholar 

  88. Vinik HR, Reves JG, Greenblatt DJ, et al. The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology. 1983;59:390–4.

    PubMed  CAS  Google Scholar 

  89. de Wildt SN, de Hoog M, Vinks AA, et al. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care unit patients. Crit Care Med. 2003;31:1952–8.

    PubMed  Google Scholar 

  90. Payne K, Mattheyse FJ, Liebenberg D, et al. The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol. 1989;37:267–72.

    PubMed  CAS  Google Scholar 

  91. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.

    PubMed  CAS  Google Scholar 

  92. Rogers WK, McDowell TS. Remimazolam, a short-acting GABA(A) receptor agonist for intravenous sedation and/or anesthesia in day-case surgical and non-surgical procedures. Drugs. 2010;13:929–37.

    CAS  Google Scholar 

  93. Shapiro BA, Warren J, Egol AB, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Crit Care Med. 1995;23:1596–600.

    PubMed  CAS  Google Scholar 

  94. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.

    PubMed  Google Scholar 

  95. Pohlman AS, Simpson KP, Hall JCB. Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: a prospective, randomized study. Crit Care Med. 1994;22:1241–7.

    PubMed  CAS  Google Scholar 

  96. Dundee JW, Johnston HM, Gray RC. Lorazepam as a sedative-amnestic in an intensive care unit. Curr Med Res Opin. 1976;4:290–5.

    PubMed  CAS  Google Scholar 

  97. Lugo RA, Chester EA, Cash J, et al. A cost analysis of enterally administered lorazepam in the pediatric intensive care unit. Crit Care Med. 1999;27:417–21.

    PubMed  CAS  Google Scholar 

  98. Tobias JD, Deshpande JK, Gregory DF. Outpatient therapy of iatrogenic drug dependency following prolonged sedation in the Pediatric Intensive Care Unit. Intensive Care Med. 1994;20:504–7.

    PubMed  CAS  Google Scholar 

  99. Arbour R, Esparis B. Osmolar gap acidosis in a 60 year old man treated for hypoxemic respiratory failure. Chest. 2000;118:545–6.

    PubMed  CAS  Google Scholar 

  100. Reynolds HN, Teiken P, Regan ME, et al. Hyperlactatemia, increased osmolar gap, renal dysfunction during continuous lorazepam infusion. Crit Care Med. 2000;28:1631–4.

    PubMed  CAS  Google Scholar 

  101. Arroliga AC, Shehab N, McCarthy K, Gonzales JP. Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults. Crit Care Med. 2004;32:1709–14.

    PubMed  CAS  Google Scholar 

  102. Chicella M, Jansen P, Parthiban A, et al. Propylene glycol accumulation associated with continuous infusion of lorazepam in pediatric intensive care patients. Crit Care Med. 2002;30:2752–6.

    PubMed  CAS  Google Scholar 

  103. Sfez M, Le Mapihan Y, Levron JC, Gaillard JL, Rosemblatt JM, Le Moing JP. Comparison of the pharmacokinetics of etomidate in children and adults. Ann Fr Anesth Reanim. 1990;9:127–31.

    PubMed  CAS  Google Scholar 

  104. Brussel T, Theissen JL, Vigfusson G, et al. Hemodynamic and cardiodynamic effects of propofol and etomidate: negative inotropic properties of propofol. Anesth Analg. 1989;69:35–40.

    PubMed  CAS  Google Scholar 

  105. Kay B. A clinical assessment of the use of etomidate in children. Br J Anaesth. 1976;48:207–10.

    PubMed  CAS  Google Scholar 

  106. Kay B. Total intravenous anesthesia with etomidate: evaluation of a practical technique for children. Acta Anaesthesiol Belg. 1977;28:115–21.

    PubMed  CAS  Google Scholar 

  107. Dhawan N, Chauhan S, Kothari SS, Kiran U, Das S, Makhija N. Hemodynamic responses to etomidate in pediatric patients with congenital cardiac shunt lesions. J Cardiothorac Vasc Anesth. 2010;24:802–7.

    PubMed  CAS  Google Scholar 

  108. Schechter WS, Kim C, Martinez M, Gleason BF, Lund DP, Burrows FA. Anaesthetic induction in a child with end-stage cardiomyopathy. Can J Anaesth. 1995;42:404–8.

    PubMed  CAS  Google Scholar 

  109. Tobias JD. Etomidate: applications in pediatric anesthesia and critical care. J Intensive Care Med. 1997;12:324–6.

    Google Scholar 

  110. Ching KY, Baum CR. Newer agents for rapid sequence intubation: etomidate and rocuronium. Pediatr Emerg Care. 2009;25:200–7.

    PubMed  Google Scholar 

  111. Martinon C, Duracher C, Bianot S, et al. Emergency tracheal intubation of severely head-injured children: changing daily practice after implementation of national guidelines. Pediatr Crit Care Med. 2011;12:65–70.

    PubMed  Google Scholar 

  112. Lehman KA, Mainka F. Ventilatory CO2-response after alfentanil and sedative premedication (etomidate, diazepam, and droperidol): a comparative study with human volunteers. Acta Anaesthesiol Belg. 1986;37:3–13.

    Google Scholar 

  113. Choi SD, Spaulding BC, Gross JB, Apfelbaum JL. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology. 1985;62:442–7.

    PubMed  CAS  Google Scholar 

  114. Giese JL, Stockham RJ, Stanley TH, et al. Etomidate versus thiopental for induction of anesthesia. Anesth Analg. 1985;64:871–6.

    PubMed  CAS  Google Scholar 

  115. Morgan M, Lumley J, Whitwam JG. Respiratory effects of etomidate. Br J Anaesth. 1977;49:233–6.

    PubMed  CAS  Google Scholar 

  116. Renou AM, Vernhiet J, Macrez P, et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50:1047–51.

    PubMed  CAS  Google Scholar 

  117. Modica PA, Tempellhoff R. Intracranial pressure during induction of anesthesia and tracheal intubation with etomidate-induced EEG burst suppression. Can J Anaesth. 1992;39:236–41.

    PubMed  CAS  Google Scholar 

  118. Gancher S, Laxer KD, Krieger W. Activation of epileptogenic activity by etomidate. Anesthesiology. 1984;61:616–8.

    PubMed  CAS  Google Scholar 

  119. Ebrahim ZY, DeBoer GE, Luders H, Hahn JF, Lesser RP. Effect of etomidate on the electroencephalogram of patients with epilepsy. Anesth Analg. 1986;65:1004–6.

    PubMed  CAS  Google Scholar 

  120. Ghoneim MM, Yamada T. Etomidate: a clinical and electroencephalographic comparison with thiopental. Anesth Analg. 1977;56:479–85.

    PubMed  CAS  Google Scholar 

  121. Doenicke AW, Roizen MF, Kugler J, Kroll H, Foss J, Ostwald P. Reducing myoclonus after etomidate. Anesthesiology. 1999;90:113–9.

    PubMed  CAS  Google Scholar 

  122. Patel A, Dallas SH. A trial of etomidate infusion anaesthesia for computerized axial tomography (letter). Anaesthesia. 1981;36:63.

    Google Scholar 

  123. Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310:1415–8.

    PubMed  CAS  Google Scholar 

  124. Annane D. ICU physicians should abandon the use of etomidate. Intensive Care Med. 2005;31:325–6.

    PubMed  Google Scholar 

  125. Cotton BA, Guillamondegui OD, Fleming SB, et al. Increased risk of adrenal insufficiency following etomidate exposure in critically injured patients. Arch Surg. 2008;143:62–7.

    PubMed  Google Scholar 

  126. Markowitz BP. The drug that would not die (though patients receiving it do)(editorial). Pediatr Crit Care Med. 2009;10:418–9.

    Google Scholar 

  127. Scherzer D, Leder M, Tobias JD. Pro-con debate: etomidate or ketamine for rapid sequence intubation in pediatric patients. J Pediatr Pharmacol Ther. 2012;17:142–9.

    PubMed  PubMed Central  Google Scholar 

  128. Duthie DJR, Fraser R, Nimmo WS. Effect of induction of anaesthesia with etomidate on corticosteroid synthesis in man. Br J Anaesth. 1985;57:156–9.

    PubMed  CAS  Google Scholar 

  129. Donmez A, Kaya H, Haberal A, Kutsal A, Arslan G. The effect of etomidate induction on plasma cortisol levels in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1998;12:182–5.

    PubMed  CAS  Google Scholar 

  130. Absalom A, Pledger D, Kong A. Adrenocortical function in critically ill patients 24 hour after a single dose of etomidate. Anaesthesia. 1999;54:861–7.

    PubMed  CAS  Google Scholar 

  131. Vinclair M, Broux C, Faure P, et al. Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med. 2008;34:714–9.

    PubMed  Google Scholar 

  132. Ray DC, McKeown DW. Effect of induction agent on vasopressor and steroid use, and outcome in patients with septic shock. Crit Care. 2007;11:145–7.

    Google Scholar 

  133. Sprung CL, Annane D, Keh D, et al. CORTICUS study group: hydrocortisone therapy for patients with septic shock. JAMA. 2002;288:862–71.

    Google Scholar 

  134. Gelb AW, Lok P. Etomidate reversibly depresses human neutrophil chemiluminescence. Anesthesiology. 1987;66:60–3.

    PubMed  CAS  Google Scholar 

  135. Asehnoune K, Mahe PJ, Sequin P, et al. Etomidate increases susceptibility to pneumonia in trauma patients. Intensive Care Med. 2012;38:1673–82.

    PubMed  CAS  Google Scholar 

  136. Fazackerley EJ, Martin AJ, Tolhurst-Cleaver CL, Watkins J. Anaphylactoid reaction following the use of etomidate. Anaesthesia. 1988;43:953–4.

    PubMed  CAS  Google Scholar 

  137. Olesen AS, Huttel MS, Hole P. Venous sequelae following the injection of etomidate or thiopentone IV. Br J Anaesth. 1984;56:171–3.

    Google Scholar 

  138. Nyman Y, Von Hofsten K, Palm C, et al. Etomidate-Lipuro® is associated with considerably less injection pain in children compared with propofol with added lidocaine. Br J Anaesth. 2006;97:536–9.

    PubMed  CAS  Google Scholar 

  139. Bedicheck E, Kirschbaum B. A case of propylene glycol toxic reaction associated with etomidate infusion. Arch Intern Med. 1991;151:2297–8.

    Google Scholar 

  140. Levy ML, Aranda M, Selman V, Giannotta SL. Propylene glycol toxicity following continuous etomidate infusion for control of refractory cerebral edema. Neurosurgery. 1995;37:363–71.

    PubMed  CAS  Google Scholar 

  141. Doenicke A, Roizen MF, Hoernecke R, Mayer M, Ostwald P, Foss J. Haemolysis after etomidate: comparison of propylene glycol and lipid formulations. Br J Anaesth. 1997;79:386–8.

    PubMed  CAS  Google Scholar 

  142. Tobias JD. Airway management in the pediatric trauma patient. J Intensive Care Med. 1998;13:1–14.

    Google Scholar 

  143. Cotten JF, Forman SA, Laha JK, et al. Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology. 2010;112:637–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI-581, a new dissociative anesthetic in man. Clin Pharmacol Ther. 1965;6:279–91.

    PubMed  CAS  Google Scholar 

  145. Tobias JD. End-tidal carbon dioxide monitoring during sedation with a combination of midazolam and ketamine for children undergoing painful, invasive procedures. Pediatr Emerg Care. 1999;15:173–5.

    PubMed  CAS  Google Scholar 

  146. Adriaenssens G, Vermeyen KM, Hoffmann VLH, Mertens E, Adriaensen HF. Postoperative analgesia with iv patient-controlled morphine: effect of adding ketamine. Br J Anaesth. 1999;83:393–6.

    PubMed  CAS  Google Scholar 

  147. Jahangir SM, Islam F, Aziz L. Ketamine infusion for postoperative analgesia in asthmatics: comparison with intermittent meperidine. Anesth Analg. 1993;76:45–9.

    PubMed  CAS  Google Scholar 

  148. Himmelseher S, Durieux ME. Ketamine for perioperative pain management. Anesthesiology. 2005;102:211–20.

    PubMed  Google Scholar 

  149. Lahtinen P, Kokki H, Hakala T, et al. S(+) ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99:1295–301.

    PubMed  CAS  Google Scholar 

  150. Chernow B, Laker R, Creuss D, et al. Plasma, urine, and cerebrospinal fluid catecholamine concentrations during and after ketamine sedation. Crit Care Med. 1982;10:600–3.

    PubMed  CAS  Google Scholar 

  151. Wayman K, Shoemaker WC, Lippmann M. Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg. 1980;59:355–8.

    Google Scholar 

  152. Spotoft H, Korshin JD, Sorensen MB, et al. The cardiovascular effects of ketamine used for induction of anesthesia in patients with valvular heart disease. Can Anaesth Soc J. 1979;26:463–7.

    PubMed  CAS  Google Scholar 

  153. Dewhirst E, Frazier WJ, Leder M, Fraser DD, Tobias JD. Cardiac arrest following ketamine administration for rapid sequence intubation. J Intensive Care Med. 2013;28:375–9.

    PubMed  Google Scholar 

  154. Gooding JM, Dimick AR, Travakoli M, et al. A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in non-cardiac patients. Anesth Analg. 1977;56:813–6.

    PubMed  CAS  Google Scholar 

  155. Morray JP, Lynn AM, Stamm SJ, et al. Hemodynamic effects of ketamine in children with congenital heart disease. Anesth Analg. 1984;63:895–9.

    PubMed  CAS  Google Scholar 

  156. Hickey PR, Hansen DD, Cramolini GM, et al. Pulmonary and systemic hemodynamic responses to ketamine in infants with normal and elevated pulmonary vascular resistance. Anesthesiology. 1985;62:287–93.

    PubMed  CAS  Google Scholar 

  157. Wolfe RR, Loehr JP, Schaffer MS, Wiffins Jr JW. Hemodynamic effects of ketamine, hypoxia, and hyperoxia in children with surgically treated congenital heart disease residing ≥1,200 meters above sea level. Am J Cardiol. 1991;67:84–7.

    PubMed  CAS  Google Scholar 

  158. Williams GD, Philip BM, Chu LF, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105:1578–84.

    PubMed  CAS  Google Scholar 

  159. Singh A, Girotra S, Mehta Y, Radhakrishnan S, Shrivastava S. Total intravenous anesthesia with ketamine for pediatric interventional cardiac procedures. J Cardiothorac Vasc Anesth. 2000;14:36–9.

    PubMed  Google Scholar 

  160. Lebovic S, Reich DL, Steinberg G, Vela FP, Silvay G. Comparison of propofol versus ketamine for anesthesia in pediatric patients undergoing cardiac catheterization. Anesth Analg. 1992;74:490–4.

    PubMed  CAS  Google Scholar 

  161. Mankikian B, Cantineau JP, Sartene R, et al. Ventilatory and chest wall mechanics during ketamine anesthesia in humans. Anesthesiology. 1986;65:492–9.

    PubMed  CAS  Google Scholar 

  162. Von Ungern-Sternberg BS, Regli A, Frei FJ, et al. A deeper level of ketamine anesthesia does not affect functional residual capacity and ventilation distribution in healthy preschool children. Pediatr Anaesth. 2007;17:1150–5.

    Google Scholar 

  163. Hirshman CA, Downes H, Farbood A, Bergman NA. Ketamine block of bronchospasm in experimental canine asthma. Br J Anaesth. 1979;51:713–8.

    PubMed  CAS  Google Scholar 

  164. Bourke DL, Malit LA, Smith TC. Respiratory interactions of ketamine and morphine. Anesthesiology. 1987;66:153–6.

    PubMed  CAS  Google Scholar 

  165. Lanning CF, Harmel MH. Ketamine anesthesia. Annu Rev Med. 1975;26:137–41.

    PubMed  CAS  Google Scholar 

  166. Taylor PA, Towey RM. Depression of laryngeal reflexes during ketamine administration. Br Med J. 1971;2:688–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Brown L, Christian-Kopp S, Sherwin TS, Khan A, Barcega B, Denmark TK, Moynihan JA, Kim GJ, Stewart G, Green SM. Adjunctive atropine is unnecessary during ketamine sedation in children. Acad Emerg Med. 2008;15:314–8.

    PubMed  Google Scholar 

  168. Kye YC, Rhee JE, Kim K, Kim T, Jo YH, Jeong JH, Lee JH. Clinical effects of adjunctive atropine during ketamine sedation in pediatric emergency patients. Am J Emerg Med. 2012;30:1981–5.

    PubMed  Google Scholar 

  169. Chong JH, Chew SP, Ang AS. Is prophylactic atropine necessary during ketamine sedation in children? J Paediatr Child Health. 2013;49:309–12.

    PubMed  Google Scholar 

  170. Berkenbosch JW, Graff GR, Stark JM. Safety and efficacy of ketamine sedation for infant flexible fiberoptic bronchoscopy. Chest. 2004;125:1132–7.

    PubMed  CAS  Google Scholar 

  171. Shapiro HM, Wyte SR, Harris AB. Ketamine anesthesia in patients with intracranial pathology. Br J Anaesth. 1972;44:1200–4.

    Google Scholar 

  172. Gardner AE, Dannemiller FJ, Dean D. Intracranial cerebrospinal fluid pressure in man during ketamine anesthesia. Anesth Analg. 1972;51:741–5.

    PubMed  CAS  Google Scholar 

  173. Reicher D, Bhalla P, Rubinstein EH. Cholinergic cerebral vasodilator effects of ketamine in rabbits. Stroke. 1987;18:445–9.

    PubMed  CAS  Google Scholar 

  174. Oren RE, Rasool NA, Rubinstein EH. Effect of ketamine on cerebral cortical blood flow and metabolism in rabbits. Stroke. 1987;18:441–4.

    PubMed  CAS  Google Scholar 

  175. Pfenninger E, Dick W, Ahnefeld FW. The influence of ketamine on both the normal and raised intracranial pressure of artificially ventilated animals. Eur J Anaesthesiol. 1985;2:297–307.

    PubMed  CAS  Google Scholar 

  176. Pfenninger E, Grunert A, Bowdler I, Kilian J. The effect of ketamine on intracranial pressure during haemorrhagic shock under the conditions of both spontaneous breathing and controlled ventilation. Acta Neurochir. 1985;78:113–8.

    PubMed  CAS  Google Scholar 

  177. Albanese J, Arnaud S, Rey M, et al. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87:1328–34.

    PubMed  CAS  Google Scholar 

  178. Bourgoin A, Albanese J, Wereszczynski N, Charbit M, Vialet R, Martin C. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med. 2003;31:711–7.

    PubMed  CAS  Google Scholar 

  179. Mayberg TS, Lam AM, Matta BF, Domino KB, Winn R. Ketamine does not increase cerebral blood flow velocity of intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesth Analg. 1995;81:84–9.

    PubMed  CAS  Google Scholar 

  180. Shapira Y, Lam AM, Artru AA, Eng C, Soltow L. Ketamine alters calcium and magnesium in brain tissue following experimental head trauma in rats. J Cereb Blood Flow Metab. 1993;13:962–9.

    PubMed  CAS  Google Scholar 

  181. Rosen I, Hagerdal M. Electroencephalographic study of children during ketamine anesthesia. Acta Anaesthesiol Scand. 1976;20:32–9.

    PubMed  CAS  Google Scholar 

  182. Manohar S, Maxwell D, Winters WD. Development of EEG seizure activity during and after chronic ketamine administration in the rat. Neuropharmacology. 1972;11:819–26.

    PubMed  CAS  Google Scholar 

  183. Bourn WM, Yang DJ, Davisson JN. Effect of ketamine enantiomers on sound-induced convulsions in epilepsy prone rats. Pharmacol Res Commun. 1983;15:815–24.

    PubMed  CAS  Google Scholar 

  184. Veliskova J, Velisek L, Mares P, Rokyta R. Ketamine suppresses both bicuculline and picrotoxin induced generalized tonic clonic seizures during ontogenesis. Pharmacol Biochem Behav. 1990;37:667–74.

    PubMed  CAS  Google Scholar 

  185. Sheth RD, Gidal BE. Refractory status epilepticus: response to ketamine. Neurology. 1998;51:1765–6.

    PubMed  CAS  Google Scholar 

  186. Haeseler G, Zuzan O, Kohn G, et al. Anaesthesia with midazolam and S-(+) ketamine in spontaneously breathing paediatric patients during magnetic resonance imaging. Paediatr Anaesth. 2000;10:513–9.

    PubMed  CAS  Google Scholar 

  187. Pees C, Haas NA, Ewert P, et al. Comparison of analgesia and sedative effect of racemic ketamine and S(+) ketamine during cardiac catheterization in newborns and children. Pediatr Cardiol. 2003;24:424–9.

    PubMed  CAS  Google Scholar 

  188. Marhofer P, Freitag H, Hochtl A, et al. S(+) ketamine for rectal premedication in children. Anesth Analg. 2001;92:62–5.

    PubMed  CAS  Google Scholar 

  189. Koinig H, Marhoger P. S(+) ketamine in paediatric anaesthesia. Paediatr Anaesth. 2003;13:185–7.

    PubMed  CAS  Google Scholar 

  190. Tobias JD, Martin LD, Wetzel RC. Ketamine by continuous infusion for sedation in the pediatric intensive care unit. Crit Care Med. 1990;18:819–21.

    PubMed  CAS  Google Scholar 

  191. Hartvig P, Larsson E, Joachimsson PO. Postoperative analgesia and sedation following pediatric cardiac surgery using a constant infusion of ketamine. J Cardiothorac Vasc Anesth. 1993;7:148–53.

    PubMed  CAS  Google Scholar 

  192. Edrich T, Friedrich AD, Eltzschig HK, Felbinger TW. Ketamine for long-term sedation and analgesia of a burn patient. Anesth Analg. 2004;99:893–5.

    PubMed  CAS  Google Scholar 

  193. Youssef-Ahmed MZ, Silver P, Nimkoff L, Sagy M. Continuous infusion of ketamine in mechanically ventilated children with refractory bronchospasm. Intensive Care Med. 1996;22:972–6.

    PubMed  CAS  Google Scholar 

  194. Weksler N, Ovadia L, Muati G, et al. Nasal ketamine for paediatric premedication. Can J Anaesth. 1993;40:119–21.

    PubMed  CAS  Google Scholar 

  195. Weber F, Wulf H, el Saeidi G. Premedication with nasal s-ketamine and midazolam provides good conditions for induction of anaesthesia in preschool children. Can J Anaesth. 2003;50:470–5.

    PubMed  Google Scholar 

  196. Sebel PS, Lowdon JD. Propofol: a new intravenous anesthetic. Anesthesiology. 1989;71:260–77.

    PubMed  CAS  Google Scholar 

  197. Harris CE, Grounds RM, Murray AM, et al. Propofol for long-term sedation in the intensive care unit. A comparison with papaveretum and midazolam. Anaesthesia. 1990;45:366–72.

    PubMed  CAS  Google Scholar 

  198. Beller JP, Pottecher T, Lugnier A, et al. Prolonged sedation with propofol in ICU patients: recovery and blood concentration changes during periodic interruption in infusion. Br J Anaesth. 1988;61:583–8.

    PubMed  CAS  Google Scholar 

  199. Ronan KP, Gallagher TJ, George B, Hamby B. Comparison of propofol and midazolam for sedation in intensive care unit patients. Crit Care Med. 1995;23:286–93.

    PubMed  CAS  Google Scholar 

  200. Hemelrijck JV, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71:49–54.

    PubMed  Google Scholar 

  201. Nimkoff L, Quinn C, Silver P, Sagy M. The effects of intravenous anesthetic agents on intracranial pressure and cerebral perfusion pressure in two feline models of brain edema. J Crit Care. 1997;12:132–6.

    PubMed  CAS  Google Scholar 

  202. Watts ADJ, Eliasziw M, Gelb AW. Propofol and hyperventilation for the treatment of increased intracranial pressure in rabbits. Anesth Analg. 1998;87:564–8.

    PubMed  CAS  Google Scholar 

  203. Herregods L, Verbeke J, Rolly G, Colardyn F. Effect of propofol on elevated intracranial pressure. Preliminary results. Anaesthesia. 1988;43(Suppl):107–9.

    PubMed  Google Scholar 

  204. Pinaud M, Lelausque J, Chetanneau A, Fauchoux N, Menegalli D, Souron R. Effects of propofol on cerebral hemodynamics and metabolism in patients with brain trauma. Anesthesiology. 1990;73:404–9.

    PubMed  CAS  Google Scholar 

  205. Mangez JF, Menguy E, Roux P. Sedation par propofol a debit constant chez le traumatise cranien. Resultas preliminaires. Ann Fr Anesth Reanim. 1987;6:336–7.

    PubMed  CAS  Google Scholar 

  206. Ravussin P, Guinard JP, Ralley F, Thorin D. Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion pressure in patients undergoing craniotomy. Anaesthesia. 1988;43(suppl):107–9.

    Google Scholar 

  207. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. Anaesthesia. 1989;44:222–6.

    PubMed  CAS  Google Scholar 

  208. Yamaguchi S, Midorikawa Y, Okuda Y, et al. Propofol prevents delayed neuronal death following transient forebrain ischemia in gerbils. Can J Anaesth. 1999;46:593–8.

    PubMed  CAS  Google Scholar 

  209. Young Y, Menon DK, Tisavipat N, et al. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol. 1997;14:320–6.

    PubMed  CAS  Google Scholar 

  210. Fox J, Gelb AW, Enns J, et al. The responsiveness of cerebral blood flow to changes in arterial carbon dioxide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology. 1992;77:453–6.

    PubMed  CAS  Google Scholar 

  211. Eames WO, Rooke GA, Sai-Chuen R, Bishop MJ. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology. 1996;84:1307–11.

    PubMed  CAS  Google Scholar 

  212. Pizov R, Brown RH, Weiss YS, et al. Wheezing during induction of general anesthesia in patients with and without asthma. A randomized, blinded trial. Anesthesiology. 1995;82:1111–6.

    PubMed  CAS  Google Scholar 

  213. Chih-Chung L, Ming-Hwang S, Tan PPC, et al. Mechanisms underlying the inhibitory effect of propofol on the contraction of canine airway smooth muscle. Anesthesiology. 1999;91:750–9.

    Google Scholar 

  214. Pedersen CM, Thirstrup S, Nielsen-Kudsk JE. Smooth muscle relaxant effects of propofol and ketamine in isolated guinea-pig tracheas. Eur J Pharmacol. 1993;238:75–80.

    PubMed  CAS  Google Scholar 

  215. Brown RH, Greenberg RS, Wagner EM. Efficacy of propofol to prevent bronchoconstriction. Anesthesiology. 2001;94:851–5.

    PubMed  CAS  Google Scholar 

  216. Rieschke P, LeFleur BJ, Janicki PK. Effects of EDTA and sulfite-containing formulations of propofol on respiratory system resistance after tracheal intubation in smokers. Anesthesiology. 2003;98:323–8.

    PubMed  CAS  Google Scholar 

  217. Tritapepe L, Voci P, Marino P, et al. Calcium chloride minimizes the hemodynamic effects of propofol in patients undergoing coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1999;13:150–3.

    PubMed  CAS  Google Scholar 

  218. Sochala C, Van Deenen D, De Ville A, Govaerts MJM. Heart block following propofol in a child. Paediatr Anaesth. 1999;9:349–51.

    PubMed  CAS  Google Scholar 

  219. Egan TD, Brock-Utne JG. Asystole and anesthesia induction with a fentanyl, propofol, and succinylcholine sequence. Anesth Analg. 1991;73:818–20.

    PubMed  CAS  Google Scholar 

  220. Kannan S, Sherwood N. Termination of supraventricular tachycardia by propofol. Br J Anaesth. 2002;88:874–5.

    PubMed  CAS  Google Scholar 

  221. Trotter C, Serpell MG. Neurological sequelae in children after prolonged propofol infusions. Anaesthesia. 1992;47:340–2.

    PubMed  CAS  Google Scholar 

  222. Saunders PRI, Harris MNE. Opisthotonic posturing and other unusual neurological sequelae after outpatient anesthesia. Anaesthesia. 1992;47:552–7.

    Google Scholar 

  223. Finley GA, MacManus B, Sampson SE, Fernandez CV, Retallick I. Delayed seizures following sedation with propofol. Can J Anaesth. 1993;40:863–5.

    PubMed  CAS  Google Scholar 

  224. Hewitt PB, Chu DLK, Polkey CE, Binnie CD. Effect of propofol on the electrocorticogram in epileptic patients undergoing cortical resection. Br J Anaesth. 1999;82:199–202.

    PubMed  CAS  Google Scholar 

  225. McBurney JW, Teiken PJ, Moon MR. Propofol for treating status epilepticus. J Epilepsy. 1994;7:21–2.

    Google Scholar 

  226. Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med. 1998;338:970–6.

    PubMed  CAS  Google Scholar 

  227. Parke TJ, Stevens JE, Rice ASC, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. Br Med J. 1992;305:613–6.

    CAS  Google Scholar 

  228. Strickland RA, Murray MJ. Fatal metabolic acidosis in a pediatric patient receiving an infusion of propofol in the intensive care unit: Is there a relationship? Crit Care Med. 1995;23:405–9.

    PubMed  CAS  Google Scholar 

  229. Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia associated with prolonged propofol infusion. Neurology. 1998;50:301–3.

    PubMed  CAS  Google Scholar 

  230. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.

    PubMed  CAS  Google Scholar 

  231. Spitzfadden AC, Jimenez DF, Tobias JD. Propofol for sedation and control of intracranial pressure in children. Pediatr Neurosurg. 1999;31:194–200.

    Google Scholar 

  232. Cremer OL, Bouman EAC, Kruijswijk JE, et al. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2000;357:117–8.

    Google Scholar 

  233. Perrier ND, Baerga-Varela Y, Murray M. Death related to propofol use in an adult. Crit Care Med. 2000;28:3071–4.

    PubMed  CAS  Google Scholar 

  234. Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndromes in the ICU. J Intensive Care Med. 2011;26:59–72.

    PubMed  Google Scholar 

  235. Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med. 2000;28:172–7.

    PubMed  CAS  Google Scholar 

  236. Wolf A, Weir P, Segar P, et al. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357:606–7.

    PubMed  CAS  Google Scholar 

  237. Withington DE, Decell MK, Al AT. A case of propofol toxicity: further evidence for a causal mechanism. Pediatr Anaesth. 2004;14:505–8.

    Google Scholar 

  238. Committee on Safety of Medicines, Medicines Control Agency. Propofol (Diprivan) infusion: sedation in children aged 16 years or younger. Curr Problems Pharmacovigilance. 2001;27:10.

    Google Scholar 

  239. Rigby-Jones AE, Nolan JA, Priston MJ, et al. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology. 2002;97:1393–400.

    PubMed  CAS  Google Scholar 

  240. Reed MD, Yamashita TS, Marz CM, et al. A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient. Crit Care Med. 1996;24:1473–81.

    PubMed  CAS  Google Scholar 

  241. Norreslet J, Wahlgreen C. Propofol infusion for sedation of children. Crit Care Med. 1990;18:890–2.

    PubMed  CAS  Google Scholar 

  242. Playfor SD, Venkatesh K. Current patterns of propofol use in the United Kingdom and North America. Paediatr Anaesth. 2004;14:501–4.

    PubMed  Google Scholar 

  243. Cornfield DN, Tegtmeyer K, Nelson MD, et al. Continuous propofol infusion in 142 critically ill children. Pediatrics. 2002;110:1177–81.

    PubMed  Google Scholar 

  244. Cray SH, Holtby HM, Kartha VM, Cox PN, Roy WL. Early tracheal extubation after paediatric cardiac surgery: the use of propofol to supplement low-dose opioid anesthesia. Paediatr Anaesth. 2001;11(4):465–71.

    PubMed  CAS  Google Scholar 

  245. Cravens GT, Pcker DL, Johnson ME. Incidence of propofol infusion syndrome during noninvasive radiofrequency ablation for atrial flutter or fibrillation. Anesthesiology. 2007;106:1134–8.

    PubMed  CAS  Google Scholar 

  246. Hertzog JH, Campbell JK, Dalton HJ, Hauser GJ. Propofol anesthesia for invasive procedures in ambulatory and hospitalized children: experience in the Pediatric Intensive Care Unit. Pediatrics. 1999;103:e30.

    PubMed  CAS  Google Scholar 

  247. Reeves ST, Havidick JE, Tobin P. Conscious sedation of children with propofol is anything but conscious. Pediatrics. 2004;114:e74.

    PubMed  Google Scholar 

  248. Laxenaire MC, Mata-Bermejo E, Moneret-Vautrin DA, Gueant JL. Life-threatening anaphylactoid reactions to propofol. Anesthesiology. 1992;77:275–80.

    PubMed  CAS  Google Scholar 

  249. Gottardis M, Khunl-Brady KS, Koller W, et al. Effect of prolonged sedation with propofol on serum triglyceride and cholesterol concentrations. Br J Anaesth. 1989;62:393–6.

    PubMed  CAS  Google Scholar 

  250. Baombe JP, Parvez K. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 1: is propofol safe in patients with egg anaphylaxis? Emerg Med J. 2013;30:79–80.

    PubMed  Google Scholar 

  251. Murphy A, Campbell DE, Baines D, Mehr S. Allergic reactions to propofol in egg-allergic children. Anesth Analg. 2011;113:140–4.

    PubMed  CAS  Google Scholar 

  252. Valente JF, Anderson GL, Branson RD, et al. Disadvantages of prolonged propofol sedation in the critical care unit. Crit Care Med. 1994;22:710–2.

    PubMed  CAS  Google Scholar 

  253. Camps AS, Sanchez-Izquierdo Riera JA, Vazquez DT, et al. Midazolam and 2 % propofol in long-term sedation of traumatized, critically ill patients: efficacy and safety comparison. Crit Care Med. 2000;28:3612–9.

    CAS  Google Scholar 

  254. Barrientos-Vega R, Sanchez-Soria M, Morales-Garcia C, et al. Pharmacoeconomic assessment of propofol 2 % used for prolonged sedation. Crit Care Med. 2001;29:317–22.

    PubMed  CAS  Google Scholar 

  255. Song D, Hamza MA, White PF, et al. Comparison of a lower-lipid propofol emulsion with the standard emulsion for sedation during monitored anesthesia care. Anesthesiology. 2004;100:1072–5.

    PubMed  CAS  Google Scholar 

  256. Campos AS, Sanchez-Izquierdo R, Vazquez DT, et al. Midazolam and 2 % propofol in long-term sedation of traumatized, critically ill patients: efficacy and safety comparison. Crit Care Med. 2000;28:3612–9.

    Google Scholar 

  257. Griffin J, Ray T, Gray B, et al. Pain on injection of propofol: a thiopental/propofol mixture versus a lidocaine/propofol mixture. Am J Pain Manag. 2002;12:45–9.

    Google Scholar 

  258. Tobias JD. Prevention of pain associated with the administration of propofol in children: lidocaine versus ketamine. Am J Anesthesiol. 1996;23:231–2.

    Google Scholar 

  259. Picard P, Tramer MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.

    PubMed  CAS  Google Scholar 

  260. Mangar D, Holak EJ. Tourniquet at 50 mmHg followed by intravenous lidocaine diminishes hand pain associated with propofol injection. Anesth Analg. 1992;74:250–2.

    PubMed  CAS  Google Scholar 

  261. Haugen RD, Vaghadia H, Waters T, Merick PM. Thiopentone pretreatment for propofol injection pain in ambulatory patients. Can J Anaesth. 1993;42:1108–12.

    Google Scholar 

  262. Sosis MB, Braverman B. Growth of Staphylococcus aureus in four intravenous anesthetics. Anesth Analg. 1993;77:766–8.

    PubMed  CAS  Google Scholar 

  263. Postsurgical infections associated with extrinsically contaminated intravenous anesthetic agent—California, Illinois, Maine, and Michigan, 1990. MMWR. 1990;39:426–27, 433.

    Google Scholar 

  264. Trissel LA, Gilbert DL, Martinez JF. Drug compatibility differences with propofol injectable emulsion products with selected drugs during simulated Y-site administration. Am J Health Syst Pharm. 1997;54:1287–92.

    PubMed  CAS  Google Scholar 

  265. Lewis TC, Janicki PK, Higgins MS, et al. Anesthetic potency of propofol with disodium edetate versus sulfite-containing propofol in patients undergoing magnetic resonance imaging: a retrospective analysis. Am J Anesthesiol. 2000;27:30–2.

    Google Scholar 

  266. Fassoulaki A, Paraskeva A, Papilas K, Patris K. Hypnotic and cardiovascular effects of proprietary and generic propofol formulations do not differ. Can J Anaesth. 2001;48:459–61.

    PubMed  CAS  Google Scholar 

  267. Astrup J, Sorensen PM, Sorensen HR. Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital and lidocaine. Anesthesiology. 1981;55:263–8.

    PubMed  CAS  Google Scholar 

  268. Cormio M, Gopinath SP, Valadka A, et al. Cerebral hemodynamic effects of pentobarbital coma in head-injured patients. J Neurotrauma. 1999;16:927–36.

    PubMed  CAS  Google Scholar 

  269. Krishnamurthy KB, Drislane FW. Depth of EEG suppression and outcome in barbiturate anesthetic treatment for refractory status epilepticus. Epilepsia. 1999;40:759–62.

    PubMed  CAS  Google Scholar 

  270. Holmes GL, Riviello Jr JJ. Midazolam and pentobarbital for refractory status epilepticus. Pediatr Neurol. 1999;20:259–64.

    PubMed  CAS  Google Scholar 

  271. Ishimaru H, Takahashi A, Ikarashi Y, et al. Effects of MK-801 and pentobarbital on cholinergic terminal damage and delayed neuronal death in the ischemic gerbil hippocampus. Brain Res Bull. 1997;43:81–5.

    PubMed  CAS  Google Scholar 

  272. Morimoto Y, Morimoto Y, Nishihira J, et al. Pentobarbital inhibits apoptosis in neuronal cells. Crit Care Med. 2000;28:1899–904.

    PubMed  CAS  Google Scholar 

  273. Tobias JD, Deshpande JK, Pietsch JB, Wheeler TJ, Gregory DG. Pentobarbital sedation in the Pediatric Intensive Care Unit patient. South Med J. 1995;88:290–4.

    PubMed  CAS  Google Scholar 

  274. Tobias JD. Pentobarbital for sedation during mechanical ventilation in the Pediatric ICU patient. J Intensive Care Med. 2000;15:115–20.

    Google Scholar 

  275. Yanay O, Brogan TV, Martin LD. Continuous pentobarbital infusion in children is associated with high rates of complications. J Crit Care. 2004;19:174–8.

    PubMed  CAS  Google Scholar 

  276. Audenaert SM, Montgomery CL, Thompson DE, et al. A prospective study of rectal methohexital: efficacy and side effects in 648 cases. Anesth Analg. 1995;81:957–61.

    PubMed  CAS  Google Scholar 

  277. Nguyen MT, Greenburg SB, Fitzhugh KR, et al. Pediatric imaging: sedation with an injection formulation modified for rectal administration. Radiology. 2001;221:760–2.

    PubMed  CAS  Google Scholar 

  278. Alp H, Orbak Z, Guler I, et al. Efficacy and safety of rectal thiopental, intramuscular cocktail and rectal midazolam for sedation in children undergoing neuroimaging. Pediatr Int. 2002;44:628–34.

    PubMed  CAS  Google Scholar 

  279. Strain JD, Campbell JB, Harvey LA, et al. IV Nembutal: safe sedation for children undergoing CT. Am J Roentgenol. 1988;151:975–9.

    CAS  Google Scholar 

  280. Malviya S, Voepel-Lewis T, Tait AR, et al. Pentobarbital versus chloral hydrate for sedation of children undergoing MRI: efficacy and recovery characteristics. Paediatr Anaesth. 2004;14:589–95.

    PubMed  Google Scholar 

  281. Dershwitz M, Rosow CE, DiBiase PM, Zaslavsky A. Comparison of the sedative effects of butorphanol and midazolam. Anesthesiology. 1991;74:717–24.

    PubMed  CAS  Google Scholar 

  282. Burkle H, Dunbar S, Van Aken H. Remifentanil: a novel, short acting, mu opioid. Anesth Analg. 1996;83:646–51.

    PubMed  CAS  Google Scholar 

  283. Kinder Ross A, Davis PJ, deL Dear G, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001;93:1393–401.

    Google Scholar 

  284. Cavaliere F, Antonelli M, Arcangeli A, et al. A low-dose remifentanil infusion is well tolerated for sedation in mechanically ventilated, critically ill patients. Can J Anaesth. 2002;49:1088–94.

    PubMed  Google Scholar 

  285. Dahaba AA, Rabner T, Rehak PH, List WF, Metzler H. Remifentanil versus morphine analgesia and sedation for mechanically ventilated critically ill patients. Anesthesiology. 2004;101:640–6.

    PubMed  CAS  Google Scholar 

  286. Tobias JD. Remifentanil: Applications in the Pediatric ICU population. American Journal of Pain Management. 1998;8:114–7.

    Google Scholar 

  287. Akinci SB, Kanbak M, Guler A, Aypar U. Remifentanil versus fentanyl for short-term analgesia-based sedation in mechanically ventilated postoperative children. Paediatr Anaesth. 2005;15:870–88.

    PubMed  Google Scholar 

  288. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86:1307–11.

    PubMed  CAS  Google Scholar 

  289. Guignard B, Bossard AE, Coste C, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93:409–17.

    PubMed  CAS  Google Scholar 

  290. Keidan I, Berkenstadt H, Sidi A, et al. Propofol-remifentanil versus propofol alone for bone marrow aspiration in paediatric haemato-oncological patients. Paediatr Anaesth. 2001;11:297–301.

    PubMed  CAS  Google Scholar 

  291. Reyle-Hahn M, Niggemann B, Max M, et al. Remifentanil and propofol for sedation in children and young adolescents undergoing diagnostic flexible bronchoscopy. Paediatr Anaesth. 2000;10:59–63.

    PubMed  CAS  Google Scholar 

  292. Litman RS. Conscious sedation with remifentanil and midazolam during brief painful procedures in children. Arch Paediatr Adolesc Med. 1999;153:1085–8.

    CAS  Google Scholar 

  293. Sperry RJ, Bailey PL, Reuchman MV, et al. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology. 1992;77:416–20.

    PubMed  CAS  Google Scholar 

  294. Milde LN, Milde JH, Gallagher WJ. Effects of sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg. 1990;70:138–46.

    PubMed  CAS  Google Scholar 

  295. Pokela ML, Ryhanen PT, Koivisto ME, et al. Alfentanil-induced rigidity in newborn infants. Anesth Analg. 1992;75:252–7.

    PubMed  CAS  Google Scholar 

  296. Glick C, Evans OB, Parks BR. Muscle rigidity due to fentanyl infusion in the pediatric patient. South Med J. 1996;89:1119–20.

    PubMed  CAS  Google Scholar 

  297. Dewhirst E, Naguib A, Tobias JD. Chest wall rigidity in two infants after low-dose fentanyl administration. Pediatr Emerg Care. 2012;28:465–8.

    PubMed  Google Scholar 

  298. MacGregor R, Evans D, Sugden D, et al. Outcome at 5–6 years of prematurely born children who received morphine as neonates. Arch Dis Child Fetal Neonatal Ed. 1998;79:F40–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  299. Lynn AM, Opheim KE, Tyler DC. Morphine infusion after pediatric cardiac surgery. Crit Care Med. 1984;12:863–6.

    PubMed  CAS  Google Scholar 

  300. Quinn MW, Wild J, Dean HG, et al. Randomised double-blind controlled trial of effect of morphine on catecholamine concentrations in ventilated pre-term babies. Lancet. 1993;342:324–7.

    PubMed  CAS  Google Scholar 

  301. Franck LS, Vilardi J, Durand D, et al. Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care. 1998;7:364–9.

    PubMed  CAS  Google Scholar 

  302. Bruera E, Brenneis C, Michaud M, et al. Use of the subcutaneous route for the administration of narcotics in patients with cancer pain. Cancer. 1988;62:407–11.

    PubMed  CAS  Google Scholar 

  303. Bruera E, Gibney N, Stollery D, Marcushamer S. Use of the subcutaneous route of administration of morphine in the Intensive Care Unit. J Pain Symptom Manage. 1991;6:263–5.

    PubMed  CAS  Google Scholar 

  304. Tobias JD, O’Connor TA. Subcutaneous administration of fentanyl for sedation during mechanical ventilation in an infant. Am J Pain Manage. 1996;6:115–7.

    Google Scholar 

  305. Dietrich CC, Tobias JD. Subcutaneous fentanyl infusions in the pediatric population. Am J Pain Manage. 2003;13:146–50.

    Google Scholar 

  306. Tobias JD. Subcutaneous administration of fentanyl and midazolam to prevent withdrawal after prolonged sedation in children. Crit Care Med. 1999;27:2262–5.

    PubMed  CAS  Google Scholar 

  307. Suzuki S, Carlos MP, Chuang LF, et al. Methadone induces CCR5 and promotes AIDS virus infection. FEBS Lett. 2002;519:173–7.

    PubMed  CAS  Google Scholar 

  308. Carr DJ, Rogers TJ, Weber RJ. The relevance of opioids and opioid receptors on immunocompetence and immune homeostasis. Proc Soc Exp Biol Med. 1996;213:248–57.

    PubMed  CAS  Google Scholar 

  309. Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C. Effect of morphine on resistance to infection. J Infect Dis. 1983;148:656–66.

    PubMed  CAS  Google Scholar 

  310. Froemming JS, Lam YWF, Jann MW, Davis CM. Pharmacokinetics of haloperidol. Clin Pharmacokinet. 1989;17:396–423.

    PubMed  CAS  Google Scholar 

  311. Harvey MA. Managing agitation in critically ill adults. Am J Crit Care. 1996;5:7–16.

    PubMed  CAS  Google Scholar 

  312. Riker RR, Fraser GL, Cox PM. Continuous infusions of haloperidol controls agitation in critically ill patients. Crit Care Med. 1994;22:433–40.

    PubMed  CAS  Google Scholar 

  313. Milbrandt EB, Alexander K, Kong L, et al. Haloperidol is associated with lower hospital mortality in mechanically ventilated patients. Crit Care Med. 2005;33:226–9.

    PubMed  CAS  Google Scholar 

  314. Harrison AM, Lugo RA, Lee WE, et al. The use of haloperidol in agitated critically ill children. Clin Pediatr. 2002;41:51–4.

    Google Scholar 

  315. Schuderi PE. Droperidol: many questions, few answers. Anesthesiology. 2003;98:289–90.

    Google Scholar 

  316. US Food and Drug Administration MedWatch. http://www.fda/gov/medwatch/SAFETY/2001/inapsine.htm.

  317. Correa-Sales C, Reid K, Maze M. Pertussis toxin mediated ribosylation of G proteins blocks the hypnotic response to an alpha2 agonist in the locus coeruleus of the rat. Pharmacol Biochem Behav. 1992;43:723–7.

    PubMed  CAS  Google Scholar 

  318. Correa-Sales C, Nacif-Coelho C, Reid K, Maze M. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha2 agonist in the rat. J Pharmacol Exp Ther. 1992;263:1046–50.

    PubMed  CAS  Google Scholar 

  319. Nacif-Coelho C, Correa-Sales C, Chang LL, Maze M. Perturbation of ion channel conductance alters the hypnotic response to the alpha2 adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology. 1994;81:1527–34.

    PubMed  CAS  Google Scholar 

  320. Sculptoreanu A, Scheuer T, Catterall WA. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature. 1993;364:240–3.

    PubMed  CAS  Google Scholar 

  321. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha2 agonist is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76:948–52.

    PubMed  CAS  Google Scholar 

  322. Doze VA, Chen BX, Maze M. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology. 1989;71:75–9.

    PubMed  CAS  Google Scholar 

  323. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–36.

    PubMed  CAS  Google Scholar 

  324. Maze MM, Tranquilli W. Alpha-2 agonists: defining the role in clinical anesthesia. Anesthesiology. 1991;74:581–91.

    PubMed  CAS  Google Scholar 

  325. Mikawa K, Maekawa N, Nishina K, et al. Efficacy of oral clonidine premedication in children. Anesthesiology. 1993;79:926–31.

    PubMed  CAS  Google Scholar 

  326. De Kock MF, Pichon G, Scholtes JL. Intraoperative clonidine enhances postoperative morphine patient-controlled analgesia. Can J Anaesth. 1992;39:537–44.

    PubMed  Google Scholar 

  327. Bohrer H, Bach A, Layer M, Werning P. Clonidine as a sedative adjunct in intensive care. Intensive Care Med. 1990;16:265–6.

    PubMed  CAS  Google Scholar 

  328. Ambrose C, Sale S, Howells R, et al. Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardiovascular stability. Br J Anaesth. 2000;84:794–6.

    PubMed  CAS  Google Scholar 

  329. Arenas-Lopez S, Riphagen S, Tibby SM, et al. Use of oral clonidine for sedation in ventilated pediatric intensive care patients. Intensive Care Med. 2004;30:1625–9.

    PubMed  Google Scholar 

  330. Tobias JD. Dexmedetomidine: applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8:115–31.

    PubMed  Google Scholar 

  331. Petroz GC, Sikich N, James M, van Dyk H, Shafer SL, Schily M, Lerman J. A phase 1, two center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105:1098–110.

    PubMed  CAS  Google Scholar 

  332. Diaz SM, Rodarte A, Foley J, Capparelli EV. Pharmacokinetics of dexmedetomidine in post-surgical pediatric intensive care unit patients: a preliminary study. Pediatr Crit Care Med. 2007;8:419–24.

    PubMed  Google Scholar 

  333. Vilo S, Rautiainen P, Kaisti K, Aantaa R, Scheinin M, Manner T, Olkkola KT. Pharmacokinetics of intravenous dexmedetomidine in children under 11 yr of age. Br J Anaesth. 2008;100:697–700.

    PubMed  CAS  Google Scholar 

  334. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anaesth. 2008;18:722–30.

    PubMed  Google Scholar 

  335. Su F, Nicolson SC, Gastonguay MR, Barrett JS, Adamson PC, Kang DS, Godinez RI, Zuppa AF. Population pharmacokinetics of dexmedetomidine in infants following open heart surgery. Anesth Analg. 2010;110:1383–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  336. Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care—a pooled analysis. Peadiatr Anaesth. 2009;19:1119–29.

    Google Scholar 

  337. Hall JE, Uhrich TD, Barney JA, et al. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.

    PubMed  CAS  Google Scholar 

  338. Venn RM, Karol MD, Grounds RM. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth. 2002;88:669–75.

    PubMed  CAS  Google Scholar 

  339. Tobias JD, Berkenbosch JW. Sedation during mechanical ventilation in infants and children: dexmedetomidine versus midazolam. South Med J. 2005;97:451–5.

    Google Scholar 

  340. Berkenbosch JW, Tobias JD. Development of bradycardia during sedation with dexmedetomidine in an infant concurrently receiving digoxin. Pediatr Crit Care Med. 2003;4:203–5.

    PubMed  Google Scholar 

  341. Koroglu A, Demirbilek S, Teksan H, et al. Sedative, hemodynamic and respiratory effects of dexmedetomidine in children undergoing magnetic resonance imaging examination: preliminary results. Br J Anaesth. 2005;94:821–4.

    PubMed  CAS  Google Scholar 

  342. Berkenbosch JW, Wankum P, Tobias JD. Prospective evaluation of dexmedetomidine for noninvasive procedural sedation in children. Pediatr Crit Care Med. 2005;6:435–9.

    PubMed  Google Scholar 

  343. Koroglu A, Teksan H, Sagir O, et al. A comparison of the sedative, hemodynamic and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesth Analg. 2006;103:63–7.

    PubMed  CAS  Google Scholar 

  344. Mason KP, Zgleszewski SE, Dearden JL, et al. Dexmedetomidine for pediatric sedation for computed tomography imaging studies. Anesth Analg. 2006;103:57–62.

    PubMed  CAS  Google Scholar 

  345. Mason KP, Lubisch NB, Robinson F, Roskos R. Intramuscular dexmedetomidine sedation for pediatric MRI and CT. AJR Am J Roentgenol. 2011;197:720–5.

    PubMed  Google Scholar 

  346. Mason KP, Lubisch N, Robinson F, Roskos R, Epstein MA. Intramuscular dexmedetomidine: an effective route of sedation preserves background activity for pediatric electroencephalograms. J Pediatr. 2012;161:927–32.

    PubMed  CAS  Google Scholar 

  347. Scher CS, Gitlin MC. Dexmedetomidine and low-dose ketamine provide adequate sedation for awake fibreoptic intubation. Can J Anaesth. 2003;50:607–10.

    PubMed  Google Scholar 

  348. Tosun Z, Akin A, Guler G, et al. Dexmedetomidine-ketamine and propofol-ketamine combinations for anesthesia in spontaneously breathing pediatric patients undergoing cardiac catheterization. J Cardiothorac Vasc Anesth. 2006;20:515–9.

    PubMed  CAS  Google Scholar 

  349. Mester R, Easley RB, Brady KM, et al. Monitored anesthesia care with a combination of dexmedetomidine and ketamine during cardiac catheterization. Am J Ther. 2008;15:24–30.

    PubMed  Google Scholar 

  350. Tobias JD. Dexmedetomidine and ketamine: an effective alternative for procedural sedation? Pediatr Crit Care Med. 2012;13:423–7.

    PubMed  Google Scholar 

  351. Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology. 1995;82:1117–25.

    PubMed  CAS  Google Scholar 

  352. Riihioja P, Jaatinen P, Oksanen H, et al. Dexmedetomidine, diazepam, and propranolol in the treatment of alcohol withdrawal symptoms in the rat. Alcohol Clin Exp Res. 1997;21:804–8.

    PubMed  CAS  Google Scholar 

  353. Riihioja P, Jaatinen P, Haapalinna A, et al. Effects of dexmedetomidine on rat loceus coeruleus and ethanol withdrawal symptoms during intermittent ethanol exposure. Alcohol Clin Exp Res. 1999;23:432–8.

    PubMed  CAS  Google Scholar 

  354. Riihioja P, Jaatinen P, Oksanen H, et al. Dexmedetomidine alleviates ethanol withdrawal symptoms in the rat. Alcohol. 1997;14:537–44.

    PubMed  CAS  Google Scholar 

  355. Riihioja P, Jaatinen P, Haapalinna A, et al. Prevention of ethanol-induced sympathetic overactivity and degeneration by dexmedetomidine. Alcohol. 1995;12:439–46.

    PubMed  Google Scholar 

  356. Maccioli GA. Dexmedetomidine to facilitate drug withdrawal. Anesthesiology. 2003;98:575–7.

    PubMed  Google Scholar 

  357. Multz AS. Prolonged dexmedetomidine infusion as an adjunct in treating sedation-induced withdrawal. Anesth Analg. 2003;96:1054–5.

    PubMed  Google Scholar 

  358. Finkel JC, Elrefai A. The use of dexmedetomidine to facilitate opioid and benzodiazepine detoxification in an infant. Anesth Analg. 2004;98:1658–9.

    PubMed  Google Scholar 

  359. Baddigam K, Russo P, Russo J, et al. Dexmedetomidine in the treatment of withdrawal syndromes in cardiothoracic surgery patients. J Intensive Care Med. 2005;20:118–23.

    PubMed  Google Scholar 

  360. Finkel JC, Johnson YJ, Quezado YMN. The use of dexmedetomidine to facilitate acute discontinuation of opioids alter cardiac transplantation in children. Crit Care Med. 2005;33:2110–2.

    PubMed  CAS  Google Scholar 

  361. Tobias JD. Dexmedetomidine to treat opioid withdrawal in infants and children following prolonged sedation in the Pediatric ICU. J Opioid Manag. 2006;2:201–6.

    PubMed  Google Scholar 

  362. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. Anesthesiology. 1992;77:1125–33.

    PubMed  CAS  Google Scholar 

  363. Talke P, Chen R, Thomas B, et al. The hemodynamic and adrenergic effects of perioperative dexmedetomidine infusion after vascular surgery. Anesth Analg. 2000;90:834–83.

    PubMed  CAS  Google Scholar 

  364. Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia. 2001;56:408–13.

    PubMed  CAS  Google Scholar 

  365. Hammer GB, Drover DR, Cao H, et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83.

    PubMed  CAS  Google Scholar 

  366. Char D, Drover DR, Motonaga KS, et al. The effects of ketamine on dexmedetomidine-induced electrophysiologic changes. Paediatr Anesth. 2013;23:891–7.

    Google Scholar 

  367. Chrysostomou C, Beerman L, Shiderly D, et al. Dexmedetomidine: a novel drug for the treatment of atrial and junctional tachyarrhythmias during the perioperative period for congenital cardiac surgery: a preliminary study. Anesth Analg. 2008;107:1514–22.

    PubMed  CAS  Google Scholar 

  368. Tobias JD, Chrysostomou C. Dexmedetomidine: antiarrhythmic effects in the pediatric cardiac patient. Pediatr Cardiol. 2013;34:779–85.

    PubMed  Google Scholar 

  369. Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–9.

    PubMed  CAS  Google Scholar 

  370. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC, Patel PM. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008;108:225–32.

    PubMed  CAS  Google Scholar 

  371. Zornow MH, Scheller MS, Sheehan PB, Strenat MA, Matsumoto M. Intracranial pressure effects of dexmedetomidine in rabbits. Anesth Analg. 1992;75:232–7.

    PubMed  CAS  Google Scholar 

  372. Talke P, Tong C, Lee HW, et al. Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesth Analg. 1997;85:358–64.

    PubMed  CAS  Google Scholar 

  373. Kuhmonen J, Haapalinna A, Sivenius J. Effects of dexmedetomidine after transient and permanent occlusion of the middle cerebral artery in the rat. J Neural Transm. 2001;108:261–71.

    PubMed  CAS  Google Scholar 

  374. Hoffman WE, Kochs E, Werner C, Thomas C, Albrecht RF. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha-2 adrenergic antagonist atipamezole. Anesthesiology. 1991;75:328–32.

    PubMed  CAS  Google Scholar 

  375. Kuhmonen J, Pokorny J, Miettinen R, et al. Neuroprotective effects of dexmedetomidine in the gerbil hippocampus after transient global ischemia. Anesthesiology. 1997;87:371–7.

    PubMed  CAS  Google Scholar 

  376. Miyazaki Y, Adachi T, Kurata J, Utsumi J, et al. Dexmedetomidine reduces seizure threshold during enflurane anaesthesia in cats. Br J Anaesth. 1999;82:935–7.

    PubMed  CAS  Google Scholar 

  377. Whittington RA, Virag L, Vulliemoz Y, et al. Dexmedetomidine increases the cocaine seizure threshold in rats. Anesthesiology. 2002;97:693–700.

    PubMed  CAS  Google Scholar 

  378. Tanaka K, Oda Y, Funao T, et al. Dexmedetomidine decreases the convulsive potency of bupivacaine and levobupivacaine in rats: Involvement of α2-adrenoceptor for controlling convulsions. Anesth Analg. 2005;100:687–96.

    PubMed  CAS  Google Scholar 

  379. Mirski MA, Rossell LA, McPherson RW, Traystman RJ. Dexmedetomidine decreases seizure threshold in a rat model of experimental generalized epilepsy. Anesthesiology. 1994;81:1422–8.

    PubMed  CAS  Google Scholar 

  380. Keeter S, Benator RM, Weinberg SM, Hartenberg MA. Sedation in pediatric CT. Radiology. 1990;175:745–52.

    PubMed  CAS  Google Scholar 

  381. Reimche LD, Sankaran K, Hindmarsh KW, et al. Chloral hydrate sedation in neonates and infants—clinical and pharmacologic considerations. Dev Pharmacol Ther. 1989;12:57–64.

    PubMed  CAS  Google Scholar 

  382. American Academy of Pediatrics Committee on Drugs and Committee on Environmental Health. Use of chloral hydrate for sedation in children. Pediatrics. 1993;92:471–3.

    Google Scholar 

  383. Rokicki W. Cardiac arrhythmia in a child after the usual dose of chloral hydrate. Pediatr Cardiol. 1996;17:419–20.

    PubMed  CAS  Google Scholar 

  384. Seger D, Schwartz G. Chloral hydrate: a dangerous sedative for overdose patients? Pediatr Emerg Care. 1994;10:349–50.

    PubMed  CAS  Google Scholar 

  385. D’Agostino J, Terndrup TE. Chloral hydrate versus midazolam for sedation of children for neuroimaging: a randomized clinical trial. Pediatr Emerg Care. 2000;16:1–4.

    PubMed  Google Scholar 

  386. Collett BJ. Opioid tolerance: the clinical perspective. Br J Anaesth. 1998;81:58–68.

    PubMed  CAS  Google Scholar 

  387. Finnegan LP. Effects of maternal opiate abuse on the newborn. Fed Proc. 1985;44:2314–7.

    PubMed  CAS  Google Scholar 

  388. Finnegan LP, Connaughton Jr JF, Kron RE, et al. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2:141–58.

    PubMed  CAS  Google Scholar 

  389. Arnold JH, Truog RD, Orav EJ, et al. Tolerance and dependence in neonates sedated with fentanyl during extracorporeal membrane oxygenation. Anesthesiology. 1990;73:1136–40.

    PubMed  CAS  Google Scholar 

  390. Arnold JH, Truog RD, Scavone JM, et al. Changes in the pharmacodynamic response to fentanyl in neonates during continuous infusion. J Pediatr. 1991;119:639–43.

    PubMed  CAS  Google Scholar 

  391. Tobias JD, Schleien CL, Haun SE. Methadone as treatment for iatrogenic opioid dependency in pediatric intensive care unit patients. Crit Care Med. 1990;18:1292–3.

    PubMed  CAS  Google Scholar 

  392. Sury MRJ, Billingham I, Russell GN, et al. Acute benzodiazepine withdrawal syndrome after midazolam infusions in children. Crit Care Med. 1989;17:301–2.

    PubMed  CAS  Google Scholar 

  393. van Engelen BGM, Gimbrere JS, Booy LH. Benzodiazepine withdrawal reaction in two children following discontinuation of sedation with midazolam. Ann Pharmacother. 1993;27:579–81.

    PubMed  Google Scholar 

  394. Fonsmark L, Rasmussen YH, Carl P. Occurrence of withdrawal in critically ill sedated children. Crit Care Med. 1999;27:196–9.

    PubMed  CAS  Google Scholar 

  395. Ho IK, Yamamoto I, Loh HH. A model for the rapid development of dispositional and functional tolerance to barbiturates. Eur J Pharmacol. 1975;30:164–71.

    PubMed  CAS  Google Scholar 

  396. Jaffe JH, Sharpless SK. The rapid development of physical dependence on barbiturates. J Pharmacol Exp Ther. 1965;150:140–6.

    PubMed  CAS  Google Scholar 

  397. Cammarano WB, Pittet JF, Weitz S, et al. Acute withdrawal syndrome related to the administration of analgesic and sedative medications in adult intensive care unit patients. Crit Care Med. 1998;26:676–84.

    PubMed  CAS  Google Scholar 

  398. Imray JM, Hay A. Withdrawal syndrome after propofol. Anaesthesia. 1991;46:704–5.

    PubMed  CAS  Google Scholar 

  399. Arnold JH, Truog RD, Molengraft JA. Tolerance to isoflurane during prolonged administration. Anesthesiology. 1993;78:985–8.

    PubMed  CAS  Google Scholar 

  400. Hughes J, Leach HJ, Choonara I. Hallucinations on withdrawal of isoflurane used as sedation. Acta Paediatr. 1993;82:885–6.

    PubMed  CAS  Google Scholar 

  401. Katz R, Kelly W, Hsi A. Prospective study on the occurrence of withdrawal in critically ill children who receive fentanyl by continuous infusion. Crit Care Med. 1994;22:763–7.

    PubMed  CAS  Google Scholar 

  402. Anand KJS, Arnold JH. Opioid tolerance and dependence in infants and children. Crit Care Med. 1994;22:334–42.

    PubMed  CAS  Google Scholar 

  403. Ista E, van Dijk M, Gamet C, et al. Withdrawal symptoms in children after long-term administration of sedative and/or analgesics: a literature review. “Assessment remains troublesome”. Intensive Care Med. 2007;33:1396–406.

    PubMed  CAS  Google Scholar 

  404. Cunliffe M, McArthur L, Dooley F. Managing sedation withdrawal in children who undergo prolonged PICU admission after discharge to the ward. Paediatr Anaesth. 2004;14:293–8.

    PubMed  CAS  Google Scholar 

  405. Franck LS, Naughton I, Winter I. Opioid and benzodiazepine withdrawal symptoms in paediatric intensive care patients. Intensive Crit Care Nurs. 2004;20:344–51.

    PubMed  Google Scholar 

  406. Ista E, van Dijk M, Gamel C, et al. Withdrawal symptoms in critically ill children after long-term administration of sedatives and/or analgesics: a first evaluation. Crit Care Med. 2008;36:2427–32.

    PubMed  CAS  Google Scholar 

  407. Fisher D, Grap MJ, Younger JB, Ameringer S, Elswick RK. Opioid withdrawal signs and symptoms in children: frequency and determinants. Heart Lung. 2013;42:407–13.

    PubMed  Google Scholar 

  408. Franck LS, Scoppettuolo LA, Wypij D, Curley MA. Validity and generalizability of the Withdrawal Assessment Tool-1 (WAT-1) for monitoring iatrogenic withdrawal syndrome in pediatric patients. Pain. 2012;153:142–8.

    PubMed  PubMed Central  Google Scholar 

  409. Franck LS, Harris SK, Soetenga DJ, Amling JK, Curley MA. The Withdrawal Assessment Tool-1 (WAT-1): an assessment instrument for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Pediatr Crit Care Med. 2008;9:573–80.

    PubMed  PubMed Central  Google Scholar 

  410. Robertson RC, Darsey E, Fortenberry JD, et al. Evaluation of an opiate-weaning protocol using methadone in pediatric intensive care unit patients. Pediatr Crit Care Med. 2000;1:119–23.

    PubMed  CAS  Google Scholar 

  411. Lugo RA, MacLaren R, Cash J, et al. Enteral methadone to expedite fentanyl discontinuation and prevent opioid abstinence syndrome in the PICU. Pharmacotherapy. 2001;21:1566–73.

    PubMed  CAS  Google Scholar 

  412. Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedative and analgesics in the critically ill adult. Crit Care Med. 2002;30:119–41.

    PubMed  Google Scholar 

  413. Playfor S, Jenkins I, Boyles C, et al. A consensus guidelines on sedation and analgesia in critically ill children. Intensive Care Med. 2006;32:1125–36.

    PubMed  CAS  Google Scholar 

  414. Tobias JD. Outpatient therapy of iatrogenic drug dependency following prolonged sedation in the pediatric intensive care unit. Intensive Care Med. 1996;11:284–7.

    Google Scholar 

  415. Meyer MT, Berens RJ. Efficacy of an enteral 10-day methadone wean to prevent opioid withdrawal in fentanyl-tolerant pediatric intensive care unit patients. Pediatr Crit Care Med. 2001;2:329–33.

    PubMed  CAS  Google Scholar 

  416. Siddappa R, Fletcher JE, Heard AMB, et al. Methadone dosage for prevention of opioid withdrawal in children. Paediatr Anaesth. 2003;13:805–10.

    PubMed  Google Scholar 

  417. Berens RJ, Meyer MT, Mikhailov TA, et al. A prospective evaluation of opioid weaning in opioid-dependent pediatric critical care patients. Anesth Analg. 2006;102:1045–50.

    PubMed  CAS  Google Scholar 

  418. Atkinson D, Dunne A, Parker M. Torsades de pointes and self-terminating ventricular fibrillation in a prescription methadone user. Anaesthesia. 2007;62:952–5.

    PubMed  CAS  Google Scholar 

  419. Gold MS, Redmond Jr DER, Kleber HD. Clonidine blocks acute opiate-withdrawal symptoms. Lancet. 1978;222:599–602.

    Google Scholar 

  420. Hoder EL, Leckman JF, Ehrenkranz R, et al. Clonidine in neonatal narcotic-abstinence syndrome. N Engl J Med. 1981;305:1284–5.

    PubMed  CAS  Google Scholar 

  421. Deutsche ES, Nadkarni VM. Clonidine prophylaxis for narcotic and sedative withdrawal syndrome following laryngotracheal reconstruction. Arch Otolaryngol Head Neck Surg. 1996;122:1234–8.

    Google Scholar 

  422. Tobias JD. Subcutaneous dexmedetomidine infusions to treat or prevent drug withdrawal in infants and children. J Pain Symptom Manage. 2008;4:187–91.

    Google Scholar 

  423. Ely EW, Gautam S, Margolin R, Francis J, et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med. 2001;27:1892–900.

    PubMed  CAS  Google Scholar 

  424. Jackson JC, Gordon SM, Hart RP, et al. The association between delirium and cognitive decline: a review of the empirical literature. Neuropsychol Rev. 2004;14:87–98.

    PubMed  Google Scholar 

  425. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2009;291:1753–62.

    Google Scholar 

  426. Ely EW, Stephens RK, Jackson JC, et al. Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: a survey of 912 healthcare professionals. Crit Care Med. 2004;32:106–12.

    PubMed  Google Scholar 

  427. Meagher DJ, Trzepacz PT. Motoric subtypes of delirium. Semin Clin Neuropsychiatry. 2000;5:75–85.

    PubMed  CAS  Google Scholar 

  428. Peterson JF, Pun BT, Dittus RS, Thomason JW, Jackson JC, Shintani AK, Ely EW. Delirium and its motoric subtypes: a study of 614 critically ill patients. J Am Geriatr Soc. 2006;54:479–84.

    PubMed  Google Scholar 

  429. Ouimet S, Riker R, Bergeon N, et al. Subsyndromal delirium in the ICU: evidence for a disease spectrum. Intensive Care Med. 2007;33:1007–13.

    PubMed  Google Scholar 

  430. Spronk PE, Rickerk B, Hofhuis J, et al. Occurrence of delirium is severely underestimated in the ICU during daily care. Intensive Care Med. 2009;35:1276–80.

    PubMed  PubMed Central  Google Scholar 

  431. Bergeron N, Dubois MJ, Dumont M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    PubMed  CAS  Google Scholar 

  432. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286:2703–10.

    PubMed  CAS  Google Scholar 

  433. Smith HAB, Boyd J, Fuchs DC, et al. Diagnosing delirium in critically ill children: validity and reliability of the Pediatric Confusion Assessment Method for the Intensive Care Unit. Crit Care. 2011;39:150–7.

    Google Scholar 

  434. Janssen NJ, Tan EYL, Staal M, Janssen EP, Leroy PL, Lousberg R, et al. On the utility of diagnostic instruments for pediatric delirium in critical illness: an evaluation of the Pediatric Anesthesia Emergence Delirium Scale, the Delirium Rating Scale 88, and the Delirium Rating Scale-Revised R-98. Intensive Care Med. 2011;37:1331–7.

    PubMed  PubMed Central  Google Scholar 

  435. Ely EW, Girard TD, Shintani AK, et al. Apolipoprotein E4 polymorphism as a genetic predisposition to delirium in critically ill patients. Crit Care Med. 2007;35:112–7.

    PubMed  CAS  Google Scholar 

  436. Marcantonio ER, Juarez G, Goldman L, et al. The relationship of postoperative delirium with psychoactive medications. JAMA. 1994;272:1518–22.

    PubMed  CAS  Google Scholar 

  437. Ouimet S, Kavanagh BP, Gottfried SB, et al. Incidence, risk factors and consequences of ICU delirium. Intensive Care Med. 2007;33:66–73.

    PubMed  Google Scholar 

  438. Morrison RS, Magaziner J, Gilbert M, et al. Relationship between pain and opioid analgesics on the development of delirium following hip fracture. J Gerontol A Biol Sci Med Sci. 2003;58:76–81.

    PubMed  Google Scholar 

  439. Tzepacz PT. Update on the neuropathogenesis of delirium. Dement Geriatr Cogn Disord. 1999;10:330–4.

    Google Scholar 

  440. Tzepacz PT. Delirium. Advances in diagnosis, pathophysiology, and treatment. Psychiatr Clin North Am. 1996;19:429–48.

    Google Scholar 

  441. Van Der Mast RC. Pathophysiology of delirium. J Geriatr Psychiatry Neurol. 1998;11:138–45.

    PubMed  Google Scholar 

  442. Wurtman RJ, Hefti F, Melamed E. Precursor control of neurotransmitter synthesis. Pharmacol Rev. 1980;32:315–35.

    PubMed  CAS  Google Scholar 

  443. Krueger JM, Walter J, Dinarello CA, et al. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am J Physiol. 1984;246:R994–9.

    PubMed  CAS  Google Scholar 

  444. Inouye SK, Bogardus Jr ST, Charpentier PA, et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med. 1999;340:669–76.

    PubMed  CAS  Google Scholar 

  445. Kress JP, Pohlman AS, O’Connor MF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342:1471–7.

    PubMed  CAS  Google Scholar 

  446. Kalisvaart KJ, de Jonghe JF, Bogaards MJ, et al. Haloperidol prophylaxis for elderly hip-surgery patients at risk for delirium: a randomized placebo-controlled study. J Am Geriatr Soc. 2005;53:1658–66.

    PubMed  Google Scholar 

  447. Skrobik YK, Bergeron N, Dumont M, et al. Olanzapine vs haloperidol: treating delirium in a critical care setting. Intensive Care Med. 2004;30:444–9.

    PubMed  Google Scholar 

  448. Schieveld JNM, van der Valk JA, Smeets I, et al. Diagnostic considerations regarding pediatric delirium: a review and a proposal for an algorithm for pediatric intensive care units. Intensive Care Med. 2009;35:1843–9.

    PubMed  PubMed Central  Google Scholar 

  449. Smith HAB, Fuchs DC, Pandharipande PP, et al. Delirium: an emerging frontier in management of critically ill children. Crit Care Clin. 2009;25:593–614.

    PubMed  PubMed Central  Google Scholar 

  450. Frager G. Pediatric palliative care: building the model, bridging the gaps. J Palliat Care. 1996;12:9–12.

    PubMed  CAS  Google Scholar 

  451. American Academy of Pediatrics, Committee on Bioethics. Ethics and the care of critically ill infants and children. Pediatrics. 1996;98:149–52.

    Google Scholar 

  452. Lowey SE, Powers BA, Xue Y. Short of breath and dying: state of the science on opioid agents for the palliation of refractory dyspnea in older adults. J Gerontol Nurs. 2013;39:43–52.

    PubMed  Google Scholar 

  453. Fielding F, Sanford TM, Davis MP. Achieving effective control in cancer pain: a review of current guidelines. Int J Palliat Nurs. 2013;19:584–91.

    PubMed  Google Scholar 

  454. American Academy of Pediatrics, Committee on Bioethics and Committee on Hospital Care. Palliative care for children. Pediatrics. 2000;106:351–7.

    Google Scholar 

  455. Puntillo K, Nelson JE, Weissman D, et al. Palliative care in the ICU: relief of pain, dyspnea, and thirst-A report from the IPAL-ICU Advisory Board. Intensive Care Med. 2014;40(2):235–48.

    PubMed  Google Scholar 

  456. Anquinet L, Rietjens JAC, Seale C, et al. The practice of continuous deep sedation until death in Belgium, the Netherlands, and the UK: a comparative study. J Pain Symptom Manage. 2012;44:33–43.

    PubMed  Google Scholar 

  457. Ten Have H, Welie JV. Palliative sedation versus euthanasia: an ethical assessment. J Pain Symptom Manage. 2014;47:123–36.

    PubMed  Google Scholar 

  458. Salas S, Frasca M, Planchet-Barraud B, et al. Ketamine analgesic effect by continuous intravenous infusion in refractory cancer pain: considerations about the clinical research in palliative care. J Palliat Med. 2012;15:287–93.

    PubMed  Google Scholar 

  459. Bell RF, Eccleston C, Kalso EA. Ketamin as an adjuvant to opioids for cancer pain. Cochrane Database Syst Rev. 2012;11, CD003351.

    PubMed  Google Scholar 

  460. Prommer EE. Ketamine for pain: an update of uses in palliative care. J Palliat Med. 2012;15:474–83.

    PubMed  Google Scholar 

  461. Okamoto Y, Tsuneto S, Tanimukai H, Matsuda Y, Ohno Y, Tsugane M, Uejima E. Can gradual dose titration of ketamine for management of neuropathic pain prevent psychotomimetic effects in patients with advanced cancer? Am J Hosp Palliat Care. 2013;30:450–4.

    PubMed  Google Scholar 

  462. Benítez-Rosario MA, Salinas-Martín A, González-Guillermo T, Feria M. A strategy for conversion from subcutaneous to oral ketamine in cancer pain patients: effect of a 1:1 ratio. J Pain Symptom Manage. 2011;41:1098–105.

    PubMed  Google Scholar 

  463. Tobias JD. Subcutaneous administration of fentanyl and midazolam to prevent withdrawal after prolonged sedation in children. Crit Care Med. 1999;27:2262–5.

    PubMed  CAS  Google Scholar 

  464. Hooke MC, Grund E, Quammen H, Miller B, McCormick P, Bostrom B. Propofol use in pediatric patients with severe cancer pain at the end of life. J Pediatr Oncol Nurs. 2007;24:29–34.

    PubMed  Google Scholar 

  465. Tobias JD. Propofol sedation for terminal care in a pediatric patient. Clin Pediatr. 1997;36:291–3.

    CAS  Google Scholar 

  466. Glover ML, Kodish E, Reed MD. Continuous propofol infusion for the relief of treatment-resistant discomfort in a terminally ill pediatric patient with cancer. J Pediatr Hematol Oncol. 1996;18:377–80.

    PubMed  CAS  Google Scholar 

  467. Anghelescu DL, Hamilton H, Faughnan LG, Johnson LM, Baker JN. Pediatric palliative sedation therapy with propofol: recommendations based on experience in children with terminal cancer. J Palliat Med. 2012;15:1082–90.

    PubMed  PubMed Central  Google Scholar 

  468. Prommer E. Dexmedetomidine: does it have potential in palliative medicine? Am J Hosp Palliat Care. 2011;28:276–83.

    PubMed  Google Scholar 

  469. Coyne PJ, Wozencraft CP, Roberts SB, Bobb B, Smith TJ. Dexmedetomidine: exploring its potential role and dosing guideline for its use in intractable pain in the palliative care setting. J Pain Palliat Care Pharmacother. 2010;24:384–6.

    PubMed  Google Scholar 

  470. Jackson 3rd KC, Wohlt P, Fine PG. Dexmedetomidine: a novel analgesic with palliative medicine potential. J Pain Palliat Care Pharmacother. 2006;20:23–7.

    PubMed  Google Scholar 

  471. Kent CD, Kaufman BS, Lowy J. Dexmedetomidine facilitates the withdrawal of ventilatory support in palliative care. Anesthesiology. 2005;103(2):439–41.

    PubMed  Google Scholar 

  472. Soares LG, Naylor C, Martins MA, Peixoto G. Dexmedetomidine: a new option for intractable distress in the dying. J Pain Symptom Manage. 2002;24:6–8.

    PubMed  Google Scholar 

  473. Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine versus midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489–99.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Tobias M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tobias, J.D. (2015). Sedation in the Pediatric Intensive Care Unit: Challenges, Outcomes, and Future Strategies in the United States. In: Mason, K. (eds) Pediatric Sedation Outside of the Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1390-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1390-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1389-3

  • Online ISBN: 978-1-4939-1390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics