Skip to main content

Stochastic Approximation Methods and Their Finite-Time Convergence Properties

  • Chapter
  • First Online:
Handbook of Simulation Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 216))

Abstract

This chapter surveys some recent advances in the design and analysis of two classes of stochastic approximation methods: stochastic first- and zeroth-order methods for stochastic optimization. We focus on the finite-time convergence properties (i.e., iteration complexity) of these algorithms by providing bounds on the number of iterations required to achieve a certain accuracy. We point out that many of these complexity bounds are theoretically optimal for solving different classes of stochastic optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A subgradient of a function f at x 0 is a vector \(y \in \mathbb{R}^{n}\) such that \(f(x) \geq f(x_{0}) + y^{T}(x - x_{0}),\ \ \forall x \in \varTheta\). The set of all such subgradients is called the subdifferential of f at the point x 0.

  2. 2.

    This assumption can be relaxed, e.g., by simply setting \(\gamma _{k} = \frac{\sqrt{2}} {M\sqrt{N}}\).

References

  1. A. Benveniste, M. Métivier, and P. Priouret. Algorithmes adaptatifs et approximations stochastiques. Masson, 1987. English translation: Adaptive Algorithms and Stochastic Approximations, Springer Verlag (1993).

    Google Scholar 

  2. C. Cartis, N. I. M. Gould, and P. L. Toint. On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization. SIAM Journal on Optimization, 22:66–86, 2012.

    Article  Google Scholar 

  3. K. Chung. On a stochastic approximation method. Annals of Mathematical Statistics, pages 463–483, 1954.

    Google Scholar 

  4. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. SIAM, Philadelphia, 2009.

    Book  Google Scholar 

  5. Y. Ermoliev. Stochastic quasigradient methods and their application to system optimization. Stochastics, 9:1–36, 1983.

    Article  Google Scholar 

  6. A. Gaivoronski. Nonstationary stochastic programming problems. Kybernetika, 4:89–92, 1978.

    Google Scholar 

  7. R. Garmanjani and L. N. Vicente. Smoothing and worst-case complexity for direct-search methods in nonsmooth optimization. IMA Journal of Numerical Analysis, 33:1008–1028, 2013.

    Article  Google Scholar 

  8. S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: a generic algorithmic framework. SIAM Journal on Optimization, 22:1469–1492, 2012.

    Article  Google Scholar 

  9. S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM Journal on Optimization, 23:2061–2089, 2013.

    Article  Google Scholar 

  10. S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23:2341–2368, 2013.

    Article  Google Scholar 

  11. S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic optimization. Technical report, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA, June 2013.

    Google Scholar 

  12. S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for constrained nonconvex stochastic programming. Manuscript, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA, August 2013.

    Google Scholar 

  13. A. Juditsky, A. Nazin, A. B. Tsybakov, and N. Vayatis. Recursive aggregation of estimators via the mirror descent algorithm with average. Problems of Information Transmission, 41:n.4, 2005.

    Google Scholar 

  14. A. Juditsky, P. Rigollet, and A. B. Tsybakov. Learning by mirror averaging. Annals of Statistics, 36:2183–2206, 2008.

    Article  Google Scholar 

  15. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics, 23:462–466, 1952.

    Article  Google Scholar 

  16. A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12:479–502, 2001.

    Article  Google Scholar 

  17. H. J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications, volume 35 of Applications of Mathematics. Springer-Verlag, New York, 2003.

    Google Scholar 

  18. G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming, 133(1):365–397, 2012.

    Article  Google Scholar 

  19. G. Lan, A. S. Nemirovski, and A. Shapiro. Validation analysis of mirror descent stochastic approximation method. Mathematical Programming, 134(2):425–458, 2012.

    Article  Google Scholar 

  20. A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

    Article  Google Scholar 

  21. A. S. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

    Google Scholar 

  22. Y. E. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120:221–259, 2006.

    Article  Google Scholar 

  23. Y. E. Nesterov. Random gradient-free minimization of convex functions. Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, January 2010.

    Google Scholar 

  24. G. Pflug. Optimization of stochastic models. In The Interface Between Simulation and Optimization. Kluwer, Boston, 1996.

    Google Scholar 

  25. B. Polyak. New stochastic approximation type procedures. Automat. i Telemekh., 7:98–107, 1990.

    Google Scholar 

  26. B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J. Control and Optimization, 30:838–855, 1992.

    Article  Google Scholar 

  27. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407, 1951.

    Article  Google Scholar 

  28. A. Ruszczyński and W. Sysk. A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems. Mathematical Programming Study, 28:113–131, 1986.

    Article  Google Scholar 

  29. J. Sacks. Asymptotic distribution of stochastic approximation. Annals of Mathematical Statistics, 29:373–409, 1958.

    Article  Google Scholar 

  30. A. Shapiro. Monte Carlo sampling methods. In A. Ruszczyński and A. Shapiro, editors, Stochastic Programming. North-Holland Publishing Company, Amsterdam, 2003.

    Google Scholar 

  31. A. Shapiro. Sample average approximation. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 1350–1355. Springer, 3rd edition, 2013.

    Google Scholar 

  32. A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia, 2009.

    Book  Google Scholar 

  33. J. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley, Hoboken, NJ, 2003.

    Book  Google Scholar 

  34. V. Strassen. The existence of probability measures with given marginals. Annals of Mathematical Statistics, 38:423–439, 1965.

    Article  Google Scholar 

  35. L. N. Vicente. Worst case complexity of direct search. EURO Journal on Computational Optimization, 1:143–153, 2013.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under Grants CMMI-1000347, CMMI-1254446, and DMS-1319050, and by the Office of Naval Research under Grant N00014-13-1-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghadimi, S., Lan, G. (2015). Stochastic Approximation Methods and Their Finite-Time Convergence Properties. In: Fu, M. (eds) Handbook of Simulation Optimization. International Series in Operations Research & Management Science, vol 216. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1384-8_7

Download citation

Publish with us

Policies and ethics