Skip to main content

Subcortical Visuomotor Control of Human Limb Movement

  • Conference paper
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 826))

Abstract

It is generally accepted that cortical networks play a major role in the visual guidance of human limb movements. However, there is a growing body of evidence that points to subcortical visuomotor processes also having an important role to play. Behavioural evidence in man comes from studies on the very fast responses that occur when a target unexpectedly jumps to a new location during either an upper-limb reaching movement or a lower-limb stepping movement. In both cases, the target jump evokes a correction in the movement trajectory at a surprisingly short latency of 120–160 ms. These very fast reactions have a number of properties that are compatible with subcortical control: (1) they are not abolished by effort of will, (2) they can be made even faster by a startling auditory stimulus, (3) they do not obey Hick’s law. Further evidence comes from measurements of reach adjustment latencies in a subject with agenesis of the corpus callosum. Latencies are the same irrespective of whether the visual stimulus appears in contralateral or ipsilateral hemispace, a finding that is incompatible with cortical visuomotor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alstermark B, Gorska T, Lundberg A, Pettersson L-G, Walkowska M. Effect of different spinal cord lesions on visually guided switching of target-reaching in cats. Neuroscience Research 1987;5:63–7.

    Article  PubMed  CAS  Google Scholar 

  • Beggs WDA, Howarth CI. Movement control in a repetitive motor task. Nature 1970;225:752–3.

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD. New observations on the normal auditory startle reflex in man. Brain 1991a;114:1891–902.

    Article  Google Scholar 

  • Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD. The hyperekplexias and their relationship to the normal startle reflex. Brain 1991b;114:1903–28.

    Article  Google Scholar 

  • Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM. Can prepared responses be stored subcortically? Experimental Brain Research 2004;159:301–9.

    Article  PubMed  Google Scholar 

  • Carlton LG. Processing visual feedback information for movement control. Journal of Experimental Psychology Human Perception and Performance 1981;7(5):1019–30.

    Article  PubMed  CAS  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM. Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey. Neuroscience Letters 1976;3:245–52.

    Article  PubMed  CAS  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM, Lemon RN. Cells of origin of the frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neuroscience Letters 1979;12:41–6.

    Article  Google Scholar 

  • Clarke JM, Zaidel E. Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes. Brain 1989;112:849–70.

    Article  PubMed  Google Scholar 

  • Courjon J-H, Olivier E, Pélisson D. Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat. Journal of Physiology 2004;556(3):675–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cowie RJ, Robinson DL. Subcortical contributions to head movements in macaques I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. Journal of Neurophysiology 1994;72(6):2648–64.

    PubMed  CAS  Google Scholar 

  • Day BL, Lyon IN. Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research 2000;130:159–68.

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Brown P. Evidence for subcortical involvement in the visual control of human reaching. Brain 2001;124:1832–40.

    Article  PubMed  CAS  Google Scholar 

  • Fries W. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. The Journal of Comparative Neurology 1984;230:55–76.

    Article  PubMed  CAS  Google Scholar 

  • Fries W. Inputs from motor and premotor cortex to the superior colliculus of the macaque monkey. Behavioural Brain Research 1985;18:95–105.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Grillner S. Visuomotor coordination in reaching and locomotion. Science 1989;245(4953):1209–10.

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Nauta WJH. Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Research 1976;116:145–9.

    Article  PubMed  CAS  Google Scholar 

  • Hallett PE. Primary and secondary saccades to goals defined by instructions. Vision Research 1978;18:1279–96.

    Article  PubMed  CAS  Google Scholar 

  • Hallett PE, Adams BD. The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Research 1980;20:329–39.

    Article  PubMed  CAS  Google Scholar 

  • Hick WE. On the rate of gain of information. Quarterly Journal of Experimental Psychology 1952;4(1):11–26.

    Article  Google Scholar 

  • Illert M, Lundberg A, Padel Y, Tanaka R. Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3-C4 propriospinal neurones. Experimental Brain Research 1978;33:101–30.

    Article  PubMed  CAS  Google Scholar 

  • Jeeves MA. A comparison of interhemispheric transmission times in acallosals and normals. Psychonomic Science 1969;16(5):245–6.

    Article  Google Scholar 

  • Kaas JH, Huerta MF. The subcortical visual system of primates. In: Steklis HD, Erwin J, editors. Comparative primate biology, volume 4: neurosciences. New York: Wiley-Liss; 1988. pp. 327–91.

    Google Scholar 

  • Keele SW, Posner MI. Processing of visual feedback in rapid movements. Journal of Experimental Psychology 1968;77(1):155–8.

    Article  PubMed  CAS  Google Scholar 

  • Keizer K, Kuypers HGJM. Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat. Experimental Brain Research 1984;54:107–20.

    Article  PubMed  CAS  Google Scholar 

  • Kinsbourne M, Fisher M. Latency of uncrossed and of crossed reaction in callosal agenesis. Neuropsychologia 1971;9:471–3.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Lawrence DG. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Research 1967;4:151–88.

    Article  PubMed  CAS  Google Scholar 

  • Kveraga K, Boucher L, Hughes HC. Saccades operate in violation of Hick’s law. Experimental Brain Research 2002;146:307–14.

    Article  PubMed  Google Scholar 

  • Linzenbold W, Himmelbach M. Signals from the deep: Reach-related activity in the human superior colliculus. The Journal of Neuroscience 2012;32(40):13881–8.

    Article  PubMed  CAS  Google Scholar 

  • Lyon IN, Day BL. Control of frontal plane body motion in human stepping. Experimental Brain Research 1997;115:345–56.

    Article  PubMed  CAS  Google Scholar 

  • Lyon IN, Day BL. Predictive control of body mass trajectory in a two-step sequence. Experimental Brain Research 2005;161:193–200.

    Article  PubMed  Google Scholar 

  • Marsden CD, Merton PA, Morton HB. Stretch reflex and servo action in a variety of human muscles. Journal of Physiology 1976;259:531–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Milner AD. Simple reaction times to lateralized visual stimuli in a case of callosal agenesis. Neuropsychologia 1982;20(4):411–9.

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Jeeves MA, Silver PH, Lines CR, Wilson J. Reaction times to lateralized visual stimuli in callosal agenesis: Stimulus and response factors. Neuropsychologia 1985;23(3):323–31.

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Masterton RB. Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals. The Journal of Comparative Neurology 1989;286:96–119.

    Article  PubMed  CAS  Google Scholar 

  • Olivier E, Chat M, Grantyn A. Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat. Experimental Brain Research 1991;87:268–82.

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Mackenzie C, Marteniuk R, Jeannerod M. The coupling of arm and finger movements during prehension. Experimental Brain Research 1990;79:431–5.

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Mackenzie C, Marteniuk R, Jeannerod M. Selective perturbation of visual input during prehension movements. Experimental Brain Research 1991;83:502–12.

    Article  PubMed  CAS  Google Scholar 

  • Poffenberger AT. Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centres. Arch Psychol 1912;3:1–73.

    Google Scholar 

  • Prablanc C, Martin O. Automatic control during reaching at undetected two-dimensional target displacements. Journal of Neurophysiology 1992;67(2):455–69.

    PubMed  CAS  Google Scholar 

  • Reynolds RF, Day BL. Rapid visuo-motor processes drive the leg regardless of balance constraints. Current Biology 2005a;15(2):R48–R49.

    Article  CAS  Google Scholar 

  • Reynolds RF, Day BL. Visual guidance of the human foot during a step. Journal of Physiology 2005b;569(2):677–84.

    Article  CAS  Google Scholar 

  • Reynolds RF, Day BL. Fast visuomotor processing made faster by sound. Journal of Physiology 2007;583(3):1107–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reynolds RF, Day BL. Direct visuomotor mapping for fast visually-evoked arm movements. Neuropsychologia 2012;50:3169–73.

    Article  PubMed  Google Scholar 

  • Soechting JF, Lacquaniti F. Modification of trajectory of a pointing movement in response to a change in target location. Journal of Neurophysiology 1983;49(2):548–64.

    PubMed  CAS  Google Scholar 

  • Sparks DL. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Research 1978;156:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Stuphorn V, Hoffmann K-P, Miller LE. Correlation of primate superior colliculus and reticular formation discharge with proximal limb muscle activity. Journal of Neurophysiology 1999;81:1978–82.

    PubMed  CAS  Google Scholar 

  • Stuphorn V, Bauswein E, Hoffmann K-P. Neurons in the primate superior colliculus coding for arm movement in gaze-related coordinates. Journal of Neurophysiology 2000;83:1283–99.

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW, editors. Analysis of visual behavior. Cambridge (MA): MIT Press; 1982. pp. 549–86.

    Google Scholar 

  • Valls-Sole J, Rothwell JC, Goulart F, Cossu G, Munoz E. Patterned ballistic movements triggered by a startle in healthy humans. Journal of Physiology 1999;516(3):931–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Werner W, Dannenberg S, Hoffmann K-P. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Experimental Brain Research 1997a;115:191–205.

    Article  CAS  Google Scholar 

  • Werner W, Hoffmann K-P, Dannenberg S. Anatomical distribution of arm-movement-related neurons in the primate superior colliculus and underlying reticular formation in comparison with visual and saccadic cells. Experimental Brain Research 1997b;115:206–16.

    Article  CAS  Google Scholar 

  • Wise SP, di Pellegrino G, Boussaoud D. The premotor cortex and nonstandard sensorimotor mapping. Canadian Journal of Physiology and Pharmacology 1996;74:469–82.

    PubMed  CAS  Google Scholar 

  • Zelaznik HN, Hawkins B, Kisselburgh L. Rapid visual feedback processing in single-aiming movements. Journal of Motor Behaviour 1983;15(3):217–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Day, B. (2014). Subcortical Visuomotor Control of Human Limb Movement. In: Levin, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 826. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1338-1_5

Download citation

Publish with us

Policies and ethics