Skip to main content

African Trypanosomiasis as Paradigm for Involvement of the Mononuclear Phagocyte System in Pathogenicity During Parasite Infection

  • Chapter
  • First Online:
Macrophages: Biology and Role in the Pathology of Diseases
  • 2459 Accesses

Abstract

African trypanosomiasis is a parasitic disease of medical and veterinary importance that has adversely influenced the economic development of sub-Saharan Africa. The causative agents, the trypanosomes, are hemoflagellated blood-borne unicellular protozoan parasites that are transmitted through the bite of their vector (i.e., the tsetse fly, glossina spp.) and cause fatal diseases in mammals, commonly called sleeping sickness in humans (HAT, Human African Trypanosomiasis) or Nagana in domestic livestock. Studies into the role of cells of the mononuclear phagocyte system (MPS), which include myeloid cells (i.e., macrophages, monocytes and granulocytes), during experimental murine trypanosome infections, have revealed that these cells make an important contribution to African trypanosomiasis development both during the early and later/chronic stages of infection, whereby they can play a protective or pathogenic role depending on their activation state. In this chapter, we will discuss (1) the parasite–host interactions with a focus on the role played by cells of the MPS and parasite-derived components triggering immune responses during the different stages/phases of experimental trypanosome infections and (2) the contribution of cells of the MPS to immunopathogenicity development with focus on liver injury and anemia. Finally, we will give (3) an overview of different strategies that can be employed to alleviate immunopathogenicity which might pave the way to develop new intervention strategies, as well as (4) discuss the potential link between murine models and HAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrianarivo AG, Muiya P, Logan-Henfrey LL (1996) Trypanosoma congolense: high erythropoietic potential in infected yearling cattle during the acute phase of the anemia. Exp Parasitol 82(2): 104–111

    CAS  PubMed  Google Scholar 

  • Anosa VO, Kaneko JJ (1983) Pathogenesis of Trypanosoma brucei infection in deer mice (Peromyscus maniculatus): hematologic, erythrocyte biochemical, and iron metabolic aspects. Am J Vet Res 44(4):639–644

    CAS  PubMed  Google Scholar 

  • Anosa VO, Logan-Henfrey LL, Wells CW (1997) The haematology of Trypanosoma congolense infection in cattle I. Sequential cytomorphological changes in the blood and bone marrow of Boran cattle. Comp Haematol Int 7(1):14–22

    Google Scholar 

  • Antoine-Moussiaux N, Magez S, Desmecht D (2008) Contributions of experimental mouse models to the understanding of African trypanosomiasis. Trends Parasitol 24(9):411–418

    PubMed  Google Scholar 

  • Askonas BA (1985) Macrophages as mediators of immunosuppression in murine African trypanosomiasis. Curr Top Microbiol Immunol 117:119–127

    CAS  PubMed  Google Scholar 

  • Baetselier PD et al (2001) Alternative versus classical macrophage activation during experimental African trypanosomosis. Int J Parasitol 31(5–6):575–587

    CAS  PubMed  Google Scholar 

  • Barkhuizen M et al (2007) Interleukin-12p70-dependent interferon- gamma production is crucial for resistance in African trypanosomiasis. J Infect Dis 196(8):1253–1260

    PubMed  Google Scholar 

  • Barkhuizen M et al (2008) Interleukin-12p70 deficiency increases survival and diminishes pathology in Trypanosoma congolense infection. J Infect Dis 198(9):1284–1291

    CAS  PubMed  Google Scholar 

  • Blum JA, Neumayr AL, Hatz CF (2012) Human African trypanosomiasis in endemic populations and travellers. Eur J Clin Microbiol Infect Dis 31(6):905–913

    CAS  PubMed  Google Scholar 

  • Bockstal V et al (2011) T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 7(6): e1002089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bosschaerts T et al (2008) Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. J Immunol 180(9):6168–6175

    CAS  PubMed  Google Scholar 

  • Bosschaerts T et al (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6(8):e1001045

    PubMed Central  PubMed  Google Scholar 

  • Bosschaerts T et al (2011) IL-10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NF-kappaB p50 member in Trypanosoma congolense infection-resistant C57BL/6 mice. Eur J Immunol 41(11):3270–3280

    CAS  PubMed  Google Scholar 

  • Brun R et al (2010) Human African trypanosomiasis. Lancet 375(9709):148–159

    PubMed  Google Scholar 

  • Caljon G et al (2006) Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74(11): 6324–6330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carod-Artal FJ (2010) Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke. Expert Rev Cardiovasc Ther 8(5):717–728

    PubMed  Google Scholar 

  • Carrington M, Walters D, Webb H (1991) The biology of the glycosylphosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Cell Biol Int Rep 15(11):1101–1114

    CAS  PubMed  Google Scholar 

  • Courtioux B et al (2006) A link between chemokine levels and disease severity in human African trypanosomiasis. Int J Parasitol 36(9):1057–1065

    CAS  PubMed  Google Scholar 

  • Coustou V et al (2012) Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Cell Microbiol 14(3):431–445

    CAS  PubMed  Google Scholar 

  • D’Ieteren GD et al (1998) Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomosis. Rev Sci Tech 17(1):154–175

    PubMed  Google Scholar 

  • Daulouede S et al (2001) Human macrophage tumor necrosis factor (TNF)-alpha production induced by Trypanosoma brucei gambiense and the role of TNF-alpha in parasite control. J Infect Dis 183(6):988–991

    CAS  PubMed  Google Scholar 

  • Dejesus E et al (2013) A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog 9(4):e1003317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dempsey WL, Mansfield JM (1983) Lymphocyte function in experimental African trypanosomiasis. V. Role of antibody and the mononuclear phagocyte system in variant-specific immunity. J Immunol 130(1):405–411

    CAS  PubMed  Google Scholar 

  • Drennan MB et al (2005) The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175(4):2501–2509

    CAS  PubMed  Google Scholar 

  • Esievo KA et al (1990) Electrophoresis of bovine erythrocyte sialic acids: existence of additional band in trypanotolerant Ndama cattle. J Comp Pathol 102(4):357–361

    CAS  PubMed  Google Scholar 

  • Fevre EM et al (2008) The burden of human African trypanosomiasis. PLoS Negl Trop Dis 2(12):e333

    PubMed Central  PubMed  Google Scholar 

  • Fox JA et al (1986) Purification and characterization of a novel glycan-phosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J Biol Chem 261(33):15767–15771

    CAS  PubMed  Google Scholar 

  • Ghassabeh GH et al (2006) Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood 108(2): 575–583

    CAS  PubMed  Google Scholar 

  • Gomez-Rodriguez J et al (2009) Identification of a parasitic immunomodulatory protein triggering the development of suppressive M1 macrophages during African trypanosomiasis. J Infect Dis 200(12):1849–1860

    CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    CAS  PubMed  Google Scholar 

  • Grab DJ, Kennedy PG (2008) Traversal of human and animal trypanosomes across the blood–brain barrier. J Neurovirol 14(5):344–351

    CAS  PubMed  Google Scholar 

  • Grosskinsky CM, Askonas BA (1981) Macrophages as primary target cells and mediators of immune dysfunction in African trypanosomiasis. Infect Immun 33(1):149–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grosskinsky CM et al (1983) Macrophage activation in murine African trypanosomiasis. Infect Immun 39(3):1080–1086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guilliams M et al (2007) African trypanosomiasis: naturally occurring regulatory T cells favor trypanotolerance by limiting pathology associated with sustained type 1 inflammation. J Immunol 179(5):2748–2757

    CAS  PubMed  Google Scholar 

  • Guilliams M et al (2008) Experimental expansion of the regulatory T cell population increases resistance to African trypanosomiasis. J Infect Dis 198(5):781–791

    CAS  PubMed  Google Scholar 

  • Guilliams M et al (2009) IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. J Immunol 182(2):1107–1118

    CAS  PubMed  Google Scholar 

  • Harris TH et al (2006) Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect Immun 74(8):4530–4537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz CJ, Mansfield JM (1999) IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Cell Immunol 192(1):24–32

    CAS  PubMed  Google Scholar 

  • Hertz CJ, Filutowicz H, Mansfield JM (1998) Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161(12):6775–6783

    CAS  PubMed  Google Scholar 

  • Hill EW et al (2005) Understanding bovine trypanosomiasis and trypanotolerance: the promise of functional genomics. Vet Immunol Immunopathol 105(3–4):247–258

    CAS  PubMed  Google Scholar 

  • Ikede BO, Losos GJ (1972) Pathological changes in cattle infected with Trypanosoma brucei. Vet Pathol 9(4):272–277

    CAS  PubMed  Google Scholar 

  • Ilemobade AA (2009) Tsetse and trypanosomosis in Africa: the challenges, the opportunities. Onderstepoort J Vet Res 76(1):35–40

    CAS  PubMed  Google Scholar 

  • Karlmark KR et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50(1):261–274

    CAS  PubMed  Google Scholar 

  • Kaushik RS et al (1999a) Innate resistance to experimental Trypanosoma congolense infection: differences in IL-10 synthesis by macrophage cell lines from resistant and susceptible inbred mice. Parasite Immunol 21(3):119–131

    CAS  PubMed  Google Scholar 

  • Kaushik RS et al (1999b) Innate resistance to Trypanosoma congolense infections: differential production of nitric oxide by macrophages from susceptible BALB/c and resistant C57Bl/6 mice. Exp Parasitol 92(2):131–143

    CAS  PubMed  Google Scholar 

  • Kaushik RS et al (2000) Innate resistance to experimental African trypanosomiasis: differences in cytokine (TNF-alpha, IL-6, IL-10 and IL-12) production by bone marrow-derived macrophages from resistant and susceptible mice. Cytokine 12(7):1024–1034

    CAS  PubMed  Google Scholar 

  • Kennedy PG (2007) Animal models of human African trypanosomiasis – very useful or too far removed? Trans R Soc Trop Med Hyg 101(11):1061–1062

    PubMed  Google Scholar 

  • Kennedy PG (2013) Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 12(2):186–194

    PubMed  Google Scholar 

  • Kobayashi A, Tizard IR (1976) The response to Trypanosoma congolense infection in calves. Determination of immunoglobulins igG1, igG2, igM and C3 levels and the complement fixing antibody titres during the course of infection. Tropenmed Parasitol 27(4):411–417

    CAS  PubMed  Google Scholar 

  • Kouchner G, Bouree P, Lowenthal M (1979) Hepatic involvement in Trypanosoma rhodesiense trypanosomiasis. Bull Soc Pathol Exot Filiales 72(2):131–135

    CAS  PubMed  Google Scholar 

  • La Greca F, Magez S (2011) Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? Hum Vaccin 7(11):1225–1233

    PubMed Central  PubMed  Google Scholar 

  • Lee SJ et al (2011) Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood 117(19):5215–5223

    CAS  PubMed  Google Scholar 

  • Leppert BJ, Mansfield JM, Paulnock DM (2007) The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage scavenger receptor and induces I kappa B alpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 179(1): 548–556

    CAS  PubMed  Google Scholar 

  • Lopez R et al (2008) Type I IFNs play a role in early resistance, but subsequent susceptibility, to the African trypanosomes. J Immunol 181(7):4908–4917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu W et al (2011) Trypanosoma congolense infections: induced nitric oxide inhibits parasite growth in vivo. J Parasitol Res 2011:316067

    PubMed Central  PubMed  Google Scholar 

  • Lucas R et al (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263(5148):814–817

    CAS  PubMed  Google Scholar 

  • Magez S et al (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137(3):715–727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magez S et al (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160(4):1949–1956

    CAS  PubMed  Google Scholar 

  • Magez S et al (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67(6):3128–3132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magez S et al (2002) VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes Infect 4(9):999–1006

    CAS  PubMed  Google Scholar 

  • Magez S et al (2004) P75 tumor necrosis factor-receptor shedding occurs as a protective host response during African trypanosomiasis. J Infect Dis 189(3):527–539

    PubMed  Google Scholar 

  • Magez S et al (2006) Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. J Infect Dis 193(11):1575–1583

    CAS  PubMed  Google Scholar 

  • Magez S et al (2007) Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing. J Infect Dis 196(6):954–962

    CAS  PubMed  Google Scholar 

  • Magez S et al (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4(8):e1000122

    PubMed Central  PubMed  Google Scholar 

  • Magez S et al (2010) Current status of vaccination against African trypanosomiasis. Parasitology 137(14):2017–2027

    PubMed  Google Scholar 

  • Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17(7):986–995

    CAS  PubMed  Google Scholar 

  • Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27(10–11):361–371

    CAS  PubMed  Google Scholar 

  • Marcoux V et al (2010) Characterization of major surface protease homologues of Trypanosoma congolense. J Biomed Biotechnol 2010:418157

    PubMed Central  PubMed  Google Scholar 

  • Mathers CD, Ezzati M, Lopez AD (2007) Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 1(2):e114

    PubMed Central  PubMed  Google Scholar 

  • Milne KG, Prescott AR, Ferguson MA (1998) Transformation of monomorphic Trypanosoma brucei bloodstream form trypomastigotes into procyclic forms at 37 degrees C by removing glucose from the culture medium. Mol Biochem Parasitol 94(1):99–112

    CAS  PubMed  Google Scholar 

  • Modespacher UP, Rudin W, Hecker H (1991) Surface coat synthesis and turnover from epimastigote to bloodstream forms of Trypanosoma brucei. Acta Trop 50(1):67–78

    CAS  PubMed  Google Scholar 

  • Morrison WI et al (1982) Protective immunity and specificity of antibody responses elicited in cattle by irradiated Trypanosoma brucei. Parasite Immunol 4(6):395–407

    CAS  PubMed  Google Scholar 

  • Moulton JE, Sollod AE (1976) Clinical, serologic, and pathologic changes in calves with experimentally induced Trypanosoma brucei infection. Am J Vet Res 37(7):791–802

    CAS  PubMed  Google Scholar 

  • Muller N, Mansfield JM, Seebeck T (1996) Trypanosome variant surface glycoproteins are recognized by self-reactive antibodies in uninfected hosts. Infect Immun 64(11):4593–4597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray M, Dexter TM (1988) Anaemia in bovine African trypanosomiasis. Acta Trop 45(4): 389–432

    CAS  PubMed  Google Scholar 

  • Murray M, Morrison WI, Whitelaw DD (1982) Host susceptibility to African trypanosomiasis: trypanotolerance. Adv Parasitol 21:1–68

    CAS  PubMed  Google Scholar 

  • Murray M, Trail JC, D’Ieteren GD (1990) Trypanotolerance in cattle and prospects for the control of trypanosomiasis by selective breeding. Rev Sci Tech 9(2):369–386

    CAS  PubMed  Google Scholar 

  • Musallam KM et al (2011) Elevated liver iron concentration is a marker of increased morbidity in patients with beta thalassemia intermedia. Haematologica 96(11):1605–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naessens J (2006) Bovine trypanotolerance: a natural ability to prevent severe anaemia and haemophagocytic syndrome? Int J Parasitol 36(5):521–528

    CAS  PubMed  Google Scholar 

  • Naessens J et al (2003) Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense. Vet Parasitol 111(2–3):125–142

    PubMed  Google Scholar 

  • Naessens J et al (2005) TNF-alpha mediates the development of anaemia in a murine Trypanosoma brucei rhodesiense infection, but not the anaemia associated with a murine Trypanosoma congolense infection. Clin Exp Immunol 139(3):405–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura Y et al (2003) Susceptibility of heat shock protein 70.1-deficient C57BL/6 J, wild-type C57BL/6 J and A/J mice to Trypanosoma congolense infection. Parasitol Res 90(2):171–174

    PubMed  Google Scholar 

  • Namangala B (2011) How the African trypanosomes evade host immune killing. Parasite Immunol 33(8):430–437

    CAS  PubMed  Google Scholar 

  • Namangala B et al (2000) Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines. J Infect Dis 181(3):1110–1120

    CAS  PubMed  Google Scholar 

  • Namangala B et al (2001a) Alternative versus classical macrophage activation during experimental African trypanosomosis. J Leukoc Biol 69(3):387–396

    CAS  PubMed  Google Scholar 

  • Namangala B et al (2001b) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183(12):1794–1800

    CAS  PubMed  Google Scholar 

  • Nishimura K et al (2006) Effects of polyamines on two strains of Trypanosoma brucei in infected rats and in vitro culture. J Parasitol 92(2):211–217

    CAS  PubMed  Google Scholar 

  • Noel W et al (2002) Infection stage-dependent modulation of macrophage activation in Trypanosoma congolense-resistant and -susceptible mice. Infect Immun 70(11):6180–6187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noel W et al (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20(3):126–133

    CAS  PubMed  Google Scholar 

  • Nok AJ, Balogun EO (2003) A bloodstream Trypanosoma congolense sialidase could be involved in anemia during experimental trypanosomiasis. J Biochem 133(6):725–730

    CAS  PubMed  Google Scholar 

  • Noyes HA et al (2009) Mechanisms controlling anaemia in Trypanosoma congolense infected mice. PLoS One 4(4):e5170

    PubMed Central  PubMed  Google Scholar 

  • O’Gorman GM et al (2009) Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics 10:207

    PubMed Central  PubMed  Google Scholar 

  • Omotainse SO, Anosa VO (2009) Comparative histopathology of the lymph nodes, spleen, liver and kidney in experimental ovine trypanosomosis. Onderstepoort J Vet Res 76(4):377–383

    CAS  PubMed  Google Scholar 

  • Paulnock DM, Freeman BE, Mansfield JM (2010) Modulation of innate immunity by African trypanosomes. Parasitology 137(14):2051–2063

    CAS  PubMed  Google Scholar 

  • Pays E (2006) The variant surface glycoprotein as a tool for adaptation in African trypanosomes. Microbes Infect 8(3):930–937

    CAS  PubMed  Google Scholar 

  • Pays E et al (2006) The trypanolytic factor of human serum. Nat Rev Microbiol 4(6):477–486

    CAS  PubMed  Google Scholar 

  • Perez-Morga D et al (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309(5733):469–472

    CAS  PubMed  Google Scholar 

  • Rifkin MR, Landsberger FR (1990) Trypanosome variant surface glycoprotein transfer to target membranes: a model for the pathogenesis of trypanosomiasis. Proc Natl Acad Sci U S A 87(2): 801–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolin S et al (1996) Simultaneous but independent activation of adenylate cyclase and glycosylphosphatidylinositol-phospholipase C under stress conditions in Trypanosoma brucei. J Biol Chem 271(18):10844–10852

    CAS  PubMed  Google Scholar 

  • Saha P, Geissmann F (2011) Toward a functional characterization of blood monocytes. Immunol Cell Biol 89(1):2–4

    PubMed  Google Scholar 

  • Salmon D et al (2012) Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337(6093):463–466

    CAS  PubMed  Google Scholar 

  • Sano H et al (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112(3):389–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schleifer KW, Mansfield JM (1993) Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 151(10):5492–5503

    CAS  PubMed  Google Scholar 

  • Schopf LR et al (1998) Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein. Infect Immun 66(2):451–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serbina NV et al (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59–70

    CAS  PubMed  Google Scholar 

  • Serbina NV et al (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi M, Pan W, Tabel H (2003) Experimental African trypanosomiasis: IFN-gamma mediates early mortality. Eur J Immunol 33(1):108–118

    CAS  PubMed  Google Scholar 

  • Shi M et al (2004) Trypanosoma congolense infections: antibody-mediated phagocytosis by Kupffer cells. J Leukoc Biol 76(2):399–405

    CAS  PubMed  Google Scholar 

  • Shi M et al (2005) Impaired Kupffer cells in highly susceptible mice infected with Trypanosoma congolense. Infect Immun 73(12):8393–8396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi M et al (2006) Experimental African trypanosomiasis: a subset of pathogenic, IFN-gamma-producing, MHC class II-restricted CD4+ T cells mediates early mortality in highly susceptible mice. J Immunol 176(3):1724–1732

    CAS  PubMed  Google Scholar 

  • Shirota H et al (2002) B cells capturing antigen conjugated with CpG oligodeoxynucleotides induce Th1 cells by elaborating IL-12. J Immunol 169(2):787–794

    CAS  PubMed  Google Scholar 

  • Shoda LK et al (2001) DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infect Immun 69(4):2162–2171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sileghem M et al (1994) Tumour necrosis factor production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: possible association with severity of anaemia associated with the disease. Parasite Immunol 16(1): 51–54

    CAS  PubMed  Google Scholar 

  • Sileghem M et al (2001) An accessory role for the diacylglycerol moiety of variable surface glycoprotein of African trypanosomes in the stimulation of bovine monocytes. Vet Immunol Immunopathol 78(3–4):325–339

    CAS  PubMed  Google Scholar 

  • Sindrilaru A et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121(3):985–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh R et al (2013) Molecular regulation of Trypanosoma congolense-induced nitric oxide production in macrophages. PLoS One 8(3):e59631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternberg JM (2004) Human African trypanosomiasis: clinical presentation and immune response. Parasite Immunol 26(11–12):469–476

    CAS  PubMed  Google Scholar 

  • Sternberg JM et al (2005) Meningoencephalitic African trypanosomiasis: brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol 167(1–2): 81–89

    CAS  PubMed  Google Scholar 

  • Steverding D (2008) The history of African trypanosomiasis. Parasit Vectors 1(1):3

    PubMed Central  PubMed  Google Scholar 

  • Stijlemans B et al (2007a) African trypanosomosis: from immune escape and immunopathology to immune intervention. Vet Parasitol 148(1):3–13

    CAS  PubMed  Google Scholar 

  • Stijlemans B et al (2007b) A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179(6):4003–4014

    CAS  PubMed  Google Scholar 

  • Stijlemans B et al (2008) Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology 213(9–10):823–835

    CAS  PubMed  Google Scholar 

  • Stijlemans B et al (2010a) Scrutinizing the mechanisms underlying the induction of anemia of inflammation through GPI-mediated modulation of macrophage activation in a model of African trypanosomiasis. Microbes Infect 12(5):389–399

    CAS  PubMed  Google Scholar 

  • Stijlemans B et al (2010b) The central role of macrophages in trypanosomiasis-associated anemia: rationale for therapeutical approaches. Endocr Metab Immune Disord Drug Targets 10(1): 71–82

    CAS  PubMed  Google Scholar 

  • Tachado SD et al (1997) Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci U S A 94(8): 4022–4027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tachado SD, Mazhari-Tabrizi R, Schofield L (1999) Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol 21(12):609–617

    CAS  PubMed  Google Scholar 

  • Taiwo VO, Anosa VO (2000) In vitro erythrophagocytosis by cultured macrophages stimulated with extraneous substances and those isolated from the blood, spleen and bone marrow of Boran and N’Dama cattle infected with Trypanosoma congolense and Trypanosoma vivax. Onderstepoort J Vet Res 67(4):273–287

    CAS  PubMed  Google Scholar 

  • Taiwo VO, Adejinmi JO, Oluwaniyi JO (2002) Non-immune control of trypanosomosis: in vitro oxidative burst of PMA- and trypanosome-stimulated neutrophils of Boran and N’Dama cattle. Onderstepoort J Vet Res 69(2):155–161

    CAS  PubMed  Google Scholar 

  • Taylor KA (1998) Immune responses of cattle to African trypanosomes: protective or pathogenic? Int J Parasitol 28(2):219–240

    CAS  PubMed  Google Scholar 

  • Theurl I et al (2006) Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood 107(10):4142–4148

    CAS  PubMed  Google Scholar 

  • Theurl I et al (2009) Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood 113(21):5277–5286

    CAS  PubMed  Google Scholar 

  • Tilg H et al (2002) Role of IL-10 for induction of anemia during inflammation. J Immunol 169(4):2204–2209

    CAS  PubMed  Google Scholar 

  • Trinchieri G (2007) Interleukin-10 production by effector T cells: Th1 cells show self control. J Exp Med 204(2):239–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Untucht C et al (2011) An optimized in vitro blood–brain barrier model reveals bidirectional transmigration of African trypanosome strains. Microbiology 157(Pt 10):2933–2941

    CAS  PubMed  Google Scholar 

  • Uzonna JE et al (1998) Immunoregulation in experimental murine Trypanosoma congolense infection: anti-IL-10 antibodies reverse trypanosome-mediated suppression of lymphocyte proliferation in vitro and moderately prolong the lifespan of genetically susceptible BALB/c mice. Parasite Immunol 20(6):293–302

    CAS  PubMed  Google Scholar 

  • Vanhamme L et al (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422(6927):83–87

    CAS  PubMed  Google Scholar 

  • Vanhollebeke B, Pays E (2010) The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol Microbiol 76(4):806–814

    CAS  PubMed  Google Scholar 

  • Vanhollebeke B et al (2008) A haptoglobin–hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320(5876):677–681

    CAS  PubMed  Google Scholar 

  • Vincendeau P et al (1992) Nitric oxide-mediated cytostatic activity on Trypanosoma brucei gambiense and Trypanosoma brucei brucei. Exp Parasitol 75(3):353–360

    CAS  PubMed  Google Scholar 

  • Webb H et al (1997) The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. J Cell Biol 139(1):103–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss G (2002) Pathogenesis and treatment of anaemia of chronic disease. Blood Rev 16(2): 87–96

    PubMed  Google Scholar 

  • Weiss G (2009) Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta 1790(7):682–693

    CAS  PubMed  Google Scholar 

  • Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352(10):1011–1023

    CAS  PubMed  Google Scholar 

  • Williams DJ et al (1996) The role of anti-variable surface glycoprotein antibody responses in bovine trypanotolerance. Parasite Immunol 18(4):209–218

    CAS  PubMed  Google Scholar 

  • Wlaschek M, Scharffetter-Kochanek K (2005) Oxidative stress in chronic venous leg ulcers. Wound Repair Regen 13(5):452–461

    PubMed  Google Scholar 

  • Wunder C, Potter RF (2003) The heme oxygenase system: its role in liver inflammation. Curr Drug Targets Cardiovasc Haematol Disord 3(3):199–208

    CAS  PubMed  Google Scholar 

  • Xiong S et al (2003) Signaling role of intracellular iron in NF-kappaB activation. J Biol Chem 278(20):17646–17654

    CAS  PubMed  Google Scholar 

  • Xiong S, She H, Tsukamoto H (2004) Signaling role of iron in NF-kappa B activation in hepatic macrophages. Comp Hepatol 3(Suppl 1):S36

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the FWO-Vlaanderen, IWT-Vlaanderen, and the Interuniversity Attraction Poles Programme—Belgian Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Stijlemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stijlemans, B., Beschin, A., De Baetselier, P., Raes, G. (2014). African Trypanosomiasis as Paradigm for Involvement of the Mononuclear Phagocyte System in Pathogenicity During Parasite Infection. In: Biswas, S., Mantovani, A. (eds) Macrophages: Biology and Role in the Pathology of Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1311-4_16

Download citation

Publish with us

Policies and ethics