Skip to main content

Breast Cancer Genetics and Risk Assessment

  • Chapter
  • First Online:
Breast Cancer Screening and Diagnosis

Abstract

An accurate estimation of breast cancer risk is essential in guiding clinical management for women at all levels of risk. The goal of providing the appropriate clinical management is to increase survival in high-risk women and decrease cost and complications in low-risk women. Women can be at high risk of developing breast cancer based on benign disease (like ADH and LCIS) as well as family history of cancer. While the former is determined by the surgeon, the genetic counselor is essential in using the family history to distinguish those at high risk for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCCN guidelines: NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Genetic/Familial High – Risk Assessment: Breast and Ovarian V.4.2013. http://www.nccn.org.

  2. Pal T, Vadaparampil ST. Genetic risk assessments in individuals at high risk for inherited breast cancer in the breast oncology care setting. Cancer Control. 2012;19(4):255–66.

    PubMed  PubMed Central  Google Scholar 

  3. Sifri R, et al. Use of cancer susceptibility testing among primary care physicians. Clin Genet. 2003;64(4):355–60.

    PubMed  CAS  Google Scholar 

  4. Wideroff L, et al. Physician use of genetic testing for cancer susceptibility: results of a national survey. Cancer Epidemiol Biomarkers Prev. 2003;12(4):295–303.

    PubMed  Google Scholar 

  5. Acheson LS, et al. Validation of a self-administered, computerized tool for collecting and displaying the family history of cancer. J Clin Oncol. 2006;24(34):5395–402.

    PubMed  Google Scholar 

  6. Sweet KM, Bradley TL, Westman JA. Identification and referral of families at high risk for cancer susceptibility. J Clin Oncol. 2002;20(2):528–37.

    PubMed  Google Scholar 

  7. Drohan B, et al. Hereditary breast and ovarian cancer and other hereditary syndromes: using technology to identify carriers. Ann Surg Oncol. 2012;19(6):1732–7.

    PubMed  Google Scholar 

  8. Simon C, et al. Patient interest in recording family histories of cancer via the internet. Genet Med. 2008;10(12):895–902.

    PubMed  PubMed Central  Google Scholar 

  9. Reid GT, et al. Family history questionnaires designed for clinical use: a systematic review. Public Health Genomics. 2009;12(2):73–83.

    PubMed  CAS  Google Scholar 

  10. Hilgart JS, Coles B, Iredale R. Cancer genetic risk assessment for individuals at risk of familial breast cancer. Cochrane Database Syst Rev. 2007;(2):CD003721.

    Google Scholar 

  11. ASCO. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol. 2003;21(12):2397–406.

    Google Scholar 

  12. Giardiello FM, et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis. N Engl J Med. 1997;336(12):823–7.

    PubMed  CAS  Google Scholar 

  13. Miller C. The value of genetic counselors in the laboratory. ARUP Laboratories; Salt Lake City, UT, 2011.

    Google Scholar 

  14. Berliner JL, et al. NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian cancer. J Genet Couns. 2013;22(2):155–63.

    PubMed  Google Scholar 

  15. Riley BD, et al. Essential elements of genetic cancer risk assessment, counseling, and testing: updated recommendations of the National Society of Genetic Counselors. J Genet Couns. 2012;21(2):151–61.

    PubMed  Google Scholar 

  16. Gail MH, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.

    PubMed  CAS  Google Scholar 

  17. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 1994;73(3):643–51.

    PubMed  CAS  Google Scholar 

  18. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.

    PubMed  Google Scholar 

  19. Berry DA, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol. 2002;20(11):2701–12.

    PubMed  CAS  Google Scholar 

  20. MacKarem G, Roche CA, Hughes KS. The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J. 2001;7(1):34–9.

    PubMed  CAS  Google Scholar 

  21. Frank TS, et al. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol. 1998;16(7):2417–25.

    PubMed  CAS  Google Scholar 

  22. Couch FJ, et al. BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med. 1997;336(20):1409–15.

    PubMed  CAS  Google Scholar 

  23. Shattuck-Eidens D, et al. BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA. 1997;278(15):1242–50.

    PubMed  CAS  Google Scholar 

  24. Kang HH, et al. Evaluation of models to predict BRCA germline mutations. Br J Cancer. 2006;95(7):914–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Barcenas CH, et al. Assessing BRCA carrier probabilities in extended families. J Clin Oncol. 2006;24(3):354–60.

    PubMed  Google Scholar 

  26. James PA, et al. Optimal selection of individuals for BRCA mutation testing: a comparison of available methods. J Clin Oncol. 2006;24(4):707–15.

    PubMed  CAS  Google Scholar 

  27. Tan MH, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2011;88(1):42–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Saslow D, et al. American Cancer Society Guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA Cancer J Clin. 2007;57(1):7–28.

    PubMed  Google Scholar 

  29. Bennett RL, et al. Standardized human pedigree nomenclature: update and assessment of the recommendations of the National Society of Genetic Counselors. J Genet Couns. 2008;17(5):424–33.

    PubMed  Google Scholar 

  30. Bennett RL, et al. Recommendations for standardized human pedigree nomenclature. Pedigree Standardization Task Force of the National Society of Genetic Counselors. Am J Hum Genet. 1995;56(3):745–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Trepanier A, et al. Genetic cancer risk assessment and counseling: recommendations of the national society of genetic counselors. J Genet Couns. 2004;13(2):83–114.

    PubMed  Google Scholar 

  32. Kumaravel V, et al. Patients do not recall important details about polyps, required for colorectal cancer prevention. Clin Gastroenterol Hepatol. 2012;11(5):543–7 e1-2.

    PubMed  Google Scholar 

  33. Jefferies S, Goldgar D, Eeles R. The accuracy of cancer diagnoses as reported in families with head and neck cancer: a case-control study. Clin Oncol (R Coll Radiol). 2008;20(4):309–14.

    CAS  Google Scholar 

  34. Murff HJ, Spigel DR, Syngal S. Does this patient have a family history of cancer? An evidence-based analysis of the accuracy of family cancer history. JAMA. 2004;292(12):1480–9.

    PubMed  CAS  Google Scholar 

  35. Chang ET, et al. Reliability of self-reported family history of cancer in a large case-control study of lymphoma. J Natl Cancer Inst. 2006;98(1):61–8.

    PubMed  Google Scholar 

  36. Mai PL, et al. Prevalence of family history of breast, colorectal, prostate, and lung cancer in a population-based study. Public Health Genomics. 2010;13(7–8):495–503.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Ozanne EM, et al. Bias in the reporting of family history: implications for clinical care. J Genet Couns. 2012;21(4):547–56.

    PubMed  Google Scholar 

  38. Ziogas A, et al. Clinically relevant changes in family history of cancer over time. JAMA. 2011;306(2):172–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Schneider KA. Counseling about cancer: strategies for genetic counseling. 2nd ed. New York: Wiley-Liss; 2002. xviii, 333 p.

    Google Scholar 

  40. Schwartz MD, et al. Impact of BRCA1/BRCA2 counseling and testing on newly diagnosed breast cancer patients. J Clin Oncol. 2004;22(10):1823–9.

    PubMed  Google Scholar 

  41. Ray JA, Loescher LJ, Brewer M. Risk-reduction surgery decisions in high-risk women seen for genetic counseling. J Genet Couns. 2005;14(6):473–84.

    PubMed  Google Scholar 

  42. Liang L, et al. Radiation-induced genetic instability in vivo depends on p53 status. Mutat Res. 2002;502(1–2):69–80.

    PubMed  CAS  Google Scholar 

  43. Shay JW, et al. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li-Fraumeni syndrome. Mol Cell Biol. 1995;15(1):425–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Heyn R, et al. Second malignant neoplasms in children treated for rhabdomyosarcoma. Intergroup Rhabdomyosarcoma Study Committee. J Clin Oncol. 1993;11(2):262–70.

    PubMed  CAS  Google Scholar 

  45. Hisada M, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.

    PubMed  CAS  Google Scholar 

  46. Salmon A, et al. Rapid development of post-radiotherapy sarcoma and breast cancer in a patient with a novel germline “de-novo” TP53 mutation. Clin Oncol (R Coll Radiol). 2007;19(7):490–3.

    CAS  Google Scholar 

  47. Vadaparampil ST, et al. Experiences of genetic counseling for BRCA1/2 among recently diagnosed breast cancer patients: a qualitative inquiry. J Psychosoc Oncol. 2008;26(4):33–52.

    PubMed  Google Scholar 

  48. Stolier AJ, Corsetti RL. Newly diagnosed breast cancer patients choose bilateral mastectomy over breast-conserving surgery when testing positive for a BRCA1/2 mutation. Am Surg. 2005;71(12):1031–3.

    PubMed  Google Scholar 

  49. Silva E. Genetic counseling and clinical management of newly diagnosed breast cancer patients at genetic risk for BRCA germline mutations: perspective of a surgical oncologist. Fam Cancer. 2008;7(1):91–5.

    PubMed  Google Scholar 

  50. Bernhardt BA, et al. Toward a model informed consent process for BRCA1 testing: a qualitative assessment of women’s attitudes. J Genet Couns. 1997;6(2):207–22.

    PubMed  Google Scholar 

  51. Geller G, et al. Genetic testing for susceptibility to adult-onset cancer. The process and content of informed consent. JAMA. 1997;277(18):1467–74.

    PubMed  CAS  Google Scholar 

  52. Geller G, et al. “Decoding” informed consent. Insights from women regarding breast cancer susceptibility testing. Hastings Cent Rep. 1997;27(2):28–33.

    PubMed  CAS  Google Scholar 

  53. Shannon KM, et al. Uptake of BRCA1 rearrangement panel testing: in individuals previously tested for BRCA1/2 mutations. Genet Med. 2006;8(12):740–5.

    PubMed  CAS  Google Scholar 

  54. Eggington JM, Burbidge LA, Roa B, Pruss D, Bowles K, Rosenthal E, Esterling L, Wenstrup R. Current variant of uncertain significance rates in BRCA1/2 and lynch syndrome testing (MLH1, MSH2, MSH6, PMS2, EPCAM). American College of Medical Genetics and Genomics annual meeting, Charlotte, NC, Mar 2012.

    Google Scholar 

  55. Ford D, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Struewing JP, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997;336(20):1401–8.

    PubMed  CAS  Google Scholar 

  57. Kauff ND, et al. Incidence of non-founder BRCA1 and BRCA2 mutations in high risk Ashkenazi breast and ovarian cancer families. J Med Genet. 2002;39(8):611–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Thorlacius S, et al. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat Genet. 1996;13(1):117–9.

    PubMed  CAS  Google Scholar 

  59. Unger MA, et al. Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing. Am J Hum Genet. 2000;67(4):841–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Chappuis PO, Nethercot V, Foulkes WD. Clinico-pathological characteristics of BRCA1- and BRCA2-related breast cancer. Semin Surg Oncol. 2000;18(4):287–95.

    PubMed  CAS  Google Scholar 

  61. Phillips KA, Andrulis IL, Goodwin PJ. Breast carcinomas arising in carriers of mutations in BRCA1 or BRCA2: are they prognostically different? J Clin Oncol. 1999;17(11):3653–63.

    PubMed  CAS  Google Scholar 

  62. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81.

    PubMed  Google Scholar 

  63. Boyd J, et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283(17):2260–5.

    PubMed  CAS  Google Scholar 

  64. Lakhani SR, et al. Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. Clin Cancer Res. 2004;10(7):2473–81.

    PubMed  CAS  Google Scholar 

  65. Levine DA, et al. Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J Clin Oncol. 2003;21(22):4222–7.

    PubMed  CAS  Google Scholar 

  66. Cass I, et al. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 2003;97(9):2187–95.

    PubMed  CAS  Google Scholar 

  67. Arun B, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol. 2011;29(28):3739–46.

    PubMed  CAS  Google Scholar 

  68. Thompson D, Easton D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68(2):410–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.

    PubMed  CAS  Google Scholar 

  70. Ozcelik H, et al. Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet. 1997;16(1):17–8.

    PubMed  CAS  Google Scholar 

  71. van Asperen CJ, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42(9):711–9.

    PubMed  PubMed Central  Google Scholar 

  72. Mocci E, et al. Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. Cancer Epidemiol Biomarkers Prev. 2013;22(5):803–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Iqbal J, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107(12):2005–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Antoniou A, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Risch HA, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet. 2001;68(3):700–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310–6.

    Google Scholar 

  77. Hartmann LC, et al. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst. 2001;93(21):1633–7.

    PubMed  CAS  Google Scholar 

  78. Rebbeck TR, et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol. 2004;22(6):1055–62.

    PubMed  Google Scholar 

  79. Meijers-Heijboer H, et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 2001;345(3):159–64.

    PubMed  CAS  Google Scholar 

  80. Robson M, et al. Appropriateness of breast-conserving treatment of breast carcinoma in women with germline mutations in BRCA1 or BRCA2: a clinic-based series. Cancer. 2005;103(1):44–51.

    PubMed  Google Scholar 

  81. Narod SA, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81.

    PubMed  CAS  Google Scholar 

  82. Gronwald J, et al. Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer. 2006;118(9):2281–4.

    PubMed  CAS  Google Scholar 

  83. Phillips KA, et al. Tamoxifen and Risk of Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. J Clin Oncol. 2013;21(35):3091–9.

    Google Scholar 

  84. Kauff ND, et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med. 2002;346(21):1609–15.

    PubMed  Google Scholar 

  85. Rebbeck TR, et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med. 2002;346(21):1616–22.

    PubMed  Google Scholar 

  86. Piver MS, et al. Primary peritoneal carcinoma after prophylactic oophorectomy in women with a family history of ovarian cancer. A report of the Gilda Radner Familial Ovarian Cancer Registry. Cancer. 1993;71(9):2751–5.

    PubMed  CAS  Google Scholar 

  87. Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol. 2004;22(4):735–42.

    PubMed  CAS  Google Scholar 

  88. Daly MB, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): genetic/familial high-risk assessment: breast and ovarian V.4.2013. © 2013 National Comprehensive Cancer Network, Inc. Available at NCCN.org. Accessed 4 Dec 2013.

  89. Sidransky D, et al. Inherited p53 gene mutations in breast cancer. Cancer Res. 1992;52(10):2984–6.

    PubMed  CAS  Google Scholar 

  90. Malkin D, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233–8.

    PubMed  CAS  Google Scholar 

  91. Birch JM, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54(5):1298–304.

    PubMed  CAS  Google Scholar 

  92. Srivastava S, et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747–9.

    PubMed  CAS  Google Scholar 

  93. Varley JM, et al. Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res. 1997;57(15):3245–52.

    PubMed  CAS  Google Scholar 

  94. Li FP, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    PubMed  CAS  Google Scholar 

  95. Gonzalez KD, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    PubMed  CAS  Google Scholar 

  96. Nichols KE, et al. Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev. 2001;10(2):83–7.

    PubMed  CAS  Google Scholar 

  97. Hwang SJ, et al. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72(4):975–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Kleihues P, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997;150(1):1–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Olivier M, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63(20):6643–50.

    PubMed  CAS  Google Scholar 

  100. Birch JM, et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene. 2001;20(34):4621–8.

    PubMed  CAS  Google Scholar 

  101. Strong LC, Williams WR, Tainsky MA. The Li-Fraumeni syndrome: from clinical epidemiology to molecular genetics. Am J Epidemiol. 1992;135(2):190–9.

    PubMed  CAS  Google Scholar 

  102. Masciari S, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat. 2012;133(3):1125–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Le Bihan C, et al. ARCAD: a method for estimating age-dependent disease risk associated with mutation carrier status from family data. Genet Epidemiol. 1995;12(1):13–25.

    PubMed  Google Scholar 

  104. Chompret A, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82(12):1932–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Wu CC, et al. Joint effects of germ-line p53 mutation and sex on cancer risk in Li-Fraumeni syndrome. Cancer Res. 2006;66(16):8287–92.

    PubMed  CAS  Google Scholar 

  106. Villani A, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559–67.

    PubMed  CAS  Google Scholar 

  107. Eng C. PTEN Hamartoma Tumor Syndrome (PHTS). In: Pagon RA, Bird TD, Dolan CR, et al., editors. GeneReviews [Internet]. Seattle: University of Washington; 2001 Nov 29 [Updated 2011 Jul 21].

    Google Scholar 

  108. Zhou XP, et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet. 2001;69(4):704–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Ni Y, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83(2):261–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37(11):828–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Pilarski R. Cowden syndrome: a critical review of the clinical literature. J Genet Couns. 2009;18(1):13–27.

    PubMed  Google Scholar 

  112. Tan MH, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Bubien V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63.

    PubMed  CAS  Google Scholar 

  114. Kutscher AH, et al. Incidence of Peutz-Jeghers syndrome. Am J Dig Dis. 1960;5:576–7.

    PubMed  CAS  Google Scholar 

  115. Aretz S, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat. 2005;26(6):513–9.

    PubMed  CAS  Google Scholar 

  116. Lim W, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126(7):1788–94.

    PubMed  CAS  Google Scholar 

  117. Hearle N, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.

    PubMed  CAS  Google Scholar 

  118. Beggs AD, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86.

    PubMed  CAS  Google Scholar 

  119. Amos CI, et al. Peutz-Jeghers syndrome. In: Pagon RA, et al., editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  120. Kluijt I, et al. Familial gastric cancer: guidelines for diagnosis, treatment and periodic surveillance. Fam Cancer. 2012;11(3):363–9.

    PubMed  Google Scholar 

  121. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK, editors. SEER Cancer Statistics Review, 1975–2008. Bethesda: National Cancer Institute; 2010. Posted to the SEER website 2011.

    Google Scholar 

  122. Kaurah P, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297(21):2360–72.

    PubMed  CAS  Google Scholar 

  123. Brooks-Wilson AR, et al. Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet. 2004;41(7):508–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Pharoah PD, et al. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121(6):1348–53.

    PubMed  CAS  Google Scholar 

  125. Keller G, et al. Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol. 1999;155(2):337–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Oliveira C, et al. Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Hum Mutat. 2002;19(5):510–7.

    PubMed  CAS  Google Scholar 

  127. Frebourg T, et al. Cleft lip/palate and CDH1/E-cadherin mutations in families with hereditary diffuse gastric cancer. J Med Genet. 2006;43(2):138–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Fitzgerald RC, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet. 2010;47(7):436–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Kaurah P, Huntsman DG. Hereditary diffuse gastric cancer. In: Pagon RA, et al., editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  130. Walsh T, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Ripperger T, et al. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet. 2009;17(6):722–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Lalloo F, Evans DG. Familial breast cancer. Clin Genet. 2012;82(2):105–14.

    PubMed  CAS  Google Scholar 

  133. Pennington KP, Swisher EM. Hereditary ovarian cancer: beyond the usual suspects. Gynecol Oncol. 2012;124(2):347–53.

    PubMed  CAS  Google Scholar 

  134. Shuen AY, Foulkes WD. Inherited mutations in breast cancer genes–risk and response. J Mammary Gland Biol Neoplasia. 2011;16(1):3–15.

    PubMed  Google Scholar 

  135. Swift M, et al. Malignant neoplasms in the families of patients with ataxia-telangiectasia. Cancer Res. 1976;36(1):209–15.

    PubMed  CAS  Google Scholar 

  136. Reiman A, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer. 2011;105(4):586–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Renwick A, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.

    PubMed  CAS  Google Scholar 

  138. Ghimenti C, et al. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer. 2002;33(3):235–42.

    PubMed  CAS  Google Scholar 

  139. Ishitobi M, et al. Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett. 2003;200(1):1–7.

    PubMed  CAS  Google Scholar 

  140. Ratajska M, et al. Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res Treat. 2012;131(1):89–97.

    PubMed  CAS  Google Scholar 

  141. Bell DW, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999;286(5449):2528–31.

    PubMed  CAS  Google Scholar 

  142. Ruijs MW, et al. The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype. Hered Cancer Clin Pract. 2009;7(1):4.

    PubMed  PubMed Central  Google Scholar 

  143. Weischer M, et al. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol. 2008;26(4):542–8.

    PubMed  Google Scholar 

  144. Adank MA, et al. CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet. 2011;48(12):860–3.

    PubMed  CAS  Google Scholar 

  145. Offit K, Garber JE. Time to check CHEK2 in families with breast cancer? J Clin Oncol. 2008;26(4):519–20.

    PubMed  Google Scholar 

  146. Bartkova J, et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol. 2008;2(4):296–316.

    PubMed  Google Scholar 

  147. Steffen J, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer. 2004;111(1):67–71.

    PubMed  CAS  Google Scholar 

  148. Buslov KG, et al. NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia. Int J Cancer. 2005;114(4):585–9.

    PubMed  CAS  Google Scholar 

  149. Steffen J, et al. Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer. 2006;119(2):472–5.

    PubMed  CAS  Google Scholar 

  150. Heikkinen K, et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006;27(8):1593–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Cao AY, et al. Some common mutations of RAD50 and NBS1 in western populations do not contribute significantly to Chinese non-BRCA1/2 hereditary breast cancer. Breast Cancer Res Treat. 2010;121(1):247–9.

    PubMed  Google Scholar 

  152. He M, et al. RAD50 and NBS1 are not likely to be susceptibility genes in Chinese non-BRCA1/2 hereditary breast cancer. Breast Cancer Res Treat. 2012;133(1):111–6.

    PubMed  CAS  Google Scholar 

  153. Tommiska J, et al. Evaluation of RAD50 in familial breast cancer predisposition. Int J Cancer. 2006;118(11):2911–6.

    PubMed  CAS  Google Scholar 

  154. Mosor M, et al. RAD50 gene mutations are not likely a risk factor for breast cancer in Poland. Breast Cancer Res Treat. 2010;123(2):607–9.

    PubMed  Google Scholar 

  155. Uhrhammer N, Delort L, Bignon YJ. Rad50 c.687delT does not contribute significantly to familial breast cancer in a French population. Cancer Epidemiol Biomarkers Prev. 2009;18(2):684–5.

    PubMed  CAS  Google Scholar 

  156. Solyom S, et al. Breast cancer-associated Abraxas mutation disrupts nuclear localization and DNA damage response functions. Sci Transl Med. 2012;4(122):122ra23.

    PubMed  Google Scholar 

  157. Seal S, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41.

    PubMed  CAS  Google Scholar 

  158. Lewis AG, et al. Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Res. 2005;7(6):R1005–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Rutter JL, et al. Mutational analysis of the BRCA1-interacting genes ZNF350/ZBRK1 and BRIP1/BACH1 among BRCA1 and BRCA2-negative probands from breast-ovarian cancer families and among early-onset breast cancer cases and reference individuals. Hum Mutat. 2003;22(2):121–8.

    PubMed  CAS  Google Scholar 

  160. Luo L, et al. No mutations in the BACH1 gene in BRCA1 and BRCA2 negative breast-cancer families linked to 17q22. Int J Cancer. 2002;98(4):638–9.

    PubMed  CAS  Google Scholar 

  161. McInerney NM, et al. Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat. 2010;121(1):203–10.

    PubMed  CAS  Google Scholar 

  162. Kuusisto KM, et al. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res. 2011;13(1):R20.

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Silvestri V, et al. Mutation analysis of BRIP1 in male breast cancer cases: a population-based study in Central Italy. Breast Cancer Res Treat. 2011;126(2):539–43.

    PubMed  Google Scholar 

  164. Solyom S, Pylkas K, Winqvist R. Screening for large genomic rearrangements of the BRIP1 and CHK1 genes in Finnish breast cancer families. Fam Cancer. 2010;9(4):537–40.

    PubMed  CAS  Google Scholar 

  165. Ameziane N, et al. Lack of large genomic deletions in BRIP1, PALB2, and FANCD2 genes in BRCA1/2 negative familial breast cancer. Breast Cancer Res Treat. 2009;118(3):651–3.

    PubMed  Google Scholar 

  166. Cao AY, et al. Mutation analysis of BRIP1/BACH1 in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat. 2009;115(1):51–5.

    PubMed  CAS  Google Scholar 

  167. Guenard F, et al. Mutational analysis of the breast cancer susceptibility gene BRIP1/BACH1/FANCJ in high-risk non-BRCA1/BRCA2 breast cancer families. J Hum Genet. 2008;53(7):579–91.

    PubMed  CAS  Google Scholar 

  168. Rafnar T, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104–7.

    PubMed  CAS  Google Scholar 

  169. Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010;70(19):7353–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Rahman N, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Erkko H, et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature. 2007;446(7133):316–9.

    PubMed  CAS  Google Scholar 

  172. Harinck F, et al. Routine testing for PALB2 mutations in familial pancreatic cancer families and breast cancer families with pancreatic cancer is not indicated. Eur J Hum Genet. 2012;20(5):577–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Blanco A, et al. Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat. 2012;132(1):307–15.

    PubMed  Google Scholar 

  174. Hellebrand H, et al. Germline mutations in the PALB2 gene are population specific and occur with low frequencies in familial breast cancer. Hum Mutat. 2011;32(6):E2176–88.

    PubMed  CAS  Google Scholar 

  175. Stadler ZK, et al. Germline PALB2 mutation analysis in breast-pancreas cancer families. J Med Genet. 2011;48(8):523–5.

    PubMed  CAS  Google Scholar 

  176. Hofstatter EW, et al. PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer. 2011;10(2):225–31.

    PubMed  CAS  Google Scholar 

  177. Casadei S, et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res. 2011;71(6):2222–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  178. Peterlongo P, et al. PALB2 germline mutations in familial breast cancer cases with personal and family history of pancreatic cancer. Breast Cancer Res Treat. 2011;126(3):825–8.

    PubMed  Google Scholar 

  179. Southey MC, et al. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res. 2010;12(6):R109.

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Bogdanova N, et al. PALB2 mutations in German and Russian patients with bilateral breast cancer. Breast Cancer Res Treat. 2011;126(2):545–50.

    PubMed  PubMed Central  Google Scholar 

  181. Ding YC, et al. Germline mutations in PALB2 in African-American breast cancer cases. Breast Cancer Res Treat. 2011;126(1):227–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Ding YC, et al. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. 2011;126(3):771–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Balia C, et al. PALB2: a novel inactivating mutation in a Italian breast cancer family. Fam Cancer. 2010;9(4):531–6.

    PubMed  CAS  Google Scholar 

  184. Adank MA, et al. PALB2 analysis in BRCA2-like families. Breast Cancer Res Treat. 2011;127(2):357–62.

    PubMed  CAS  Google Scholar 

  185. Kim JH, et al. PALB2 mutations 1592delT and 229delT are not present in Korean breast cancer patients negative for BRCA1 and BRCA2 mutations. Breast Cancer Res Treat. 2010;122(1):303–6.

    PubMed  CAS  Google Scholar 

  186. Silvestri V, et al. PALB2 mutations in male breast cancer: a population-based study in Central Italy. Breast Cancer Res Treat. 2010;122(1):299–301.

    PubMed  Google Scholar 

  187. Dansonka-Mieszkowska A, et al. A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet. 2010;11:20.

    PubMed  PubMed Central  Google Scholar 

  188. Ghadirian P, et al. The contribution of founder mutations to early-onset breast cancer in French-Canadian women. Clin Genet. 2009;76(5):421–6.

    PubMed  CAS  Google Scholar 

  189. Papi L, et al. A PALB2 germline mutation associated with hereditary breast cancer in Italy. Fam Cancer. 2010;9(2):181–5.

    PubMed  CAS  Google Scholar 

  190. Heikkinen T, et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res. 2009;15(9):3214–22.

    PubMed  CAS  Google Scholar 

  191. Sluiter M, Mew S, van Rensburg EJ. PALB2 sequence variants in young South African breast cancer patients. Fam Cancer. 2009;8(4):347–53.

    PubMed  CAS  Google Scholar 

  192. Gunnarsson H, et al. Evidence against PALB2 involvement in Icelandic breast cancer susceptibility. J Negat Results Biomed. 2008;7:5.

    PubMed  PubMed Central  Google Scholar 

  193. Pylkas K, et al. Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families. BMC Cancer. 2008;8:146.

    PubMed  PubMed Central  Google Scholar 

  194. Cao AY, et al. The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat. 2009;114(3):457–62.

    PubMed  CAS  Google Scholar 

  195. Garcia MJ, et al. Analysis of FANCB and FANCN/PALB2 fanconi anemia genes in BRCA1/2-negative Spanish breast cancer families. Breast Cancer Res Treat. 2009;113(3):545–51.

    PubMed  CAS  Google Scholar 

  196. Foulkes WD, et al. Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res. 2007;9(6):R83.

    PubMed  PubMed Central  Google Scholar 

  197. Tischkowitz M, et al. Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci U S A. 2007;104(16):6788–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  198. Erkko H, et al. Penetrance analysis of the PALB2 c.1592delT founder mutation. Clin Cancer Res. 2008;14(14):4667–71.

    PubMed  CAS  Google Scholar 

  199. Krejci L, et al. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40(13):5795–818.

    PubMed  CAS  PubMed Central  Google Scholar 

  200. Suwaki N, Klare K, Tarsounas M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol. 2011;22(8):898–905.

    PubMed  CAS  Google Scholar 

  201. Vaz F, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42(5):406–9.

    PubMed  CAS  Google Scholar 

  202. Thompson ER, et al. Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat. 2012;33(1):95–9.

    PubMed  CAS  Google Scholar 

  203. Vuorela M, et al. Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility. Breast Cancer Res Treat. 2011;130(3):1003–10.

    PubMed  CAS  Google Scholar 

  204. Romero A, et al. A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families. Breast Cancer Res Treat. 2011;129(3):939–46.

    PubMed  CAS  Google Scholar 

  205. Wickramanyake A, et al. Loss of function germline mutations in RAD51D in women with ovarian carcinoma. Gynecol Oncol. 2012;127(3):552–5.

    PubMed  CAS  Google Scholar 

  206. Coulet F, et al. Germline RAD51C mutations in ovarian cancer susceptibility. Clin Genet. 2013;83(4):332–6.

    PubMed  CAS  Google Scholar 

  207. Pelttari LM, et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet. 2011;20(16):3278–88.

    PubMed  CAS  Google Scholar 

  208. Park DJ, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90(4):734–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  209. Hilbers FS, et al. Rare variants in XRCC2 as breast cancer susceptibility alleles. J Med Genet. 2012;49(10):618–20.

    PubMed  CAS  Google Scholar 

  210. Lee SA, et al. Genetic polymorphism of XRCC3 Thr241Met and breast cancer risk: case-control study in Korean women and meta-analysis of 12 studies. Breast Cancer Res Treat. 2007;103(1):71–6.

    PubMed  CAS  Google Scholar 

  211. Zhang B, et al. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011;12(5):477–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  212. Orr N, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet. 2012;44(11):1182–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  213. Johnson J, et al. Mutation analysis of RAD51L1 (RAD51B/REC2) in multiple-case, non-BRCA1/2 breast cancer families. Breast Cancer Res Treat. 2011;129(1):255–63.

    PubMed  CAS  Google Scholar 

  214. Weissman SM, et al. Genetic counseling considerations in the evaluation of families for Lynch syndrome–a review. J Genet Couns. 2011;20(1):5–19.

    PubMed  Google Scholar 

  215. Watson P, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer. 2008;123(2):444–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  216. Win AK, et al. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol. 2012;30(9):958–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  217. Walsh MD, et al. Lynch syndrome-associated breast cancers: clinicopathologic characteristics of a case series from the colon cancer family registry. Clin Cancer Res. 2010;16(7):2214–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  218. Buerki N, et al. Evidence for breast cancer as an integral part of Lynch syndrome. Genes Chromosomes Cancer. 2012;51(1):83–91.

    PubMed  CAS  Google Scholar 

  219. Lefevre JH, et al. MYH biallelic mutation can inactivate the two genetic pathways of colorectal cancer by APC or MLH1 transversions. Fam Cancer. 2010;9(4):589–94.

    PubMed  Google Scholar 

  220. Sieber OM, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med. 2003;348(9):791–9.

    PubMed  Google Scholar 

  221. Boparai KS, et al. Hyperplastic polyps and sessile serrated adenomas as a phenotypic expression of MYH-associated polyposis. Gastroenterology. 2008;135(6):2014–8.

    PubMed  CAS  Google Scholar 

  222. Vogt S, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137(6):1976–85 e1-10.

    PubMed  Google Scholar 

  223. Nielsen M, et al. Multiplicity in polyp count and extracolonic manifestations in 40 Dutch patients with MYH associated polyposis coli (MAP). J Med Genet. 2005;42(9):e54.

    PubMed  CAS  PubMed Central  Google Scholar 

  224. Beiner ME, et al. Mutations of the MYH gene do not substantially contribute to the risk of breast cancer. Breast Cancer Res Treat. 2009;114(3):575–8.

    PubMed  CAS  Google Scholar 

  225. Lowry KP, et al. Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis. Cancer. 2012;118:2021–30.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen Mahoney Shannon MS, CGC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shannon, K.M., Chittenden, A. (2015). Breast Cancer Genetics and Risk Assessment. In: Shetty, M. (eds) Breast Cancer Screening and Diagnosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1267-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1267-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1266-7

  • Online ISBN: 978-1-4939-1267-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics