Skip to main content

Studying Host-Pathogen Interaction Events in Living Mice Visualized in Real Time Using Biophotonic Imaging

  • Protocol
  • First Online:
Host-Bacteria Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1197))

Abstract

Despite progress in mouse models of bacterial pathogens, studies are often limited by evaluating infections in an individual organ or tissue or at a given time. Here we present a technique to engineer the pathogen, e.g., Brucella melitensis, with a bioluminescent marker permitting analysis of living bacteria in real time during the infectious process from acute to chronic infection. Using this bioluminescent approach, tissue preference, differences between virulent and mutant bacteria, as well as the response of the bacteria to host metabolites can provide extraordinary data enhancing our understanding of host-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maudlin I, Weber S (2006) The control of neglected zoonotic diseases: a route to poverty alleviation. WHO, Geneva

    Google Scholar 

  2. Glynn M, Lynn TV (2008) Brucellosis. J Amer Vet Med Assoc 233:900–908

    Article  Google Scholar 

  3. Young E (1995) An overview of human brucellosis. Clin Infect Dis 21:283–289

    Article  CAS  PubMed  Google Scholar 

  4. Corbel M (1997) Brucellosis: an overview. Emerg Infect Dis 3:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Waring SC (2005) Brucellosis. In: Kahn C, Line S (eds) Merck veterinary manual, 9th edn. Merck, Whitehouse Station, NJ, p 2546

    Google Scholar 

  6. Kulkarni R, Chunchanur SK, Ajantha GS, Shubhada C, Jain P (2009) Presumptive diagnosis of brucella epididymoorchitis by modified cold ZN staining of testicular pus sample. Indian J Med Res 130:484–486

    CAS  PubMed  Google Scholar 

  7. Koc Z, Turunc T, Boga C (2007) Gonadal brucellar abscess: imaging and clinical findings in 3 cases and review of the literature. J Clin Ultrasound 35:395–400

    Article  PubMed  Google Scholar 

  8. Buzgan T, Karahocagil MK, Irmak H, Baran AI, Karsen H, Evirgen O, Akdeniz H (2010) Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis 14:e469–e478

    Article  PubMed  Google Scholar 

  9. Durward M, Radhakrishnan G, Harms J, Bareiss C, Magnani D, Splitter GA (2012) Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLoS One 7:e34925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rajashekara G, Glover DA, Krepps M, Splitter GA (2005) Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol 7:1459–1473

    Article  CAS  PubMed  Google Scholar 

  11. Rajashekara G, Glover DA, Banai M, O’Callaghan D, Splitter GA (2006) Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice. Infect Immun 74:2925–2936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. O'Callaghan DCC, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220

    Article  PubMed  Google Scholar 

  13. Foulongne VBG, Cazevieille C, Michaux-Charachon S, O’Callaghan D (2000) Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sieira R, Comerci DJ, Sanchez DO, Ugalde RA (2000) A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182:4849–4855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP, Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497

    Article  CAS  PubMed  Google Scholar 

  17. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA (2009) Brucella TIR domain-containing protein mimics properties of the toll-like receptor adaptor protein TIRAP. J Biol Chem 284:9892–9898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gonzalez D, Grillo MJ, De Miguel MJ et al (2008) Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 3:e2760

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hiramoto RM, Galisteo AJ, Galisteo AJ, do Nascimento N, de Andrade HF (2002) 200 Gy sterilized Toxoplasma gondii tachyzoites maintain metabolic functions and mammalian cell invasion, eliciting cellular immunity and cytokine response similar to natural infection in mice. Vaccine 20:2072–2081

    Article  CAS  PubMed  Google Scholar 

  20. Magnani D, Harms JS, Durward MA, Splitter GA (2009) Nondividing but metabolically active gamma-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice. Infect Immun 77:5181–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Essenberg R, Seshadri R, Nelson K, Paulsen I (2002) Sugar metabolism by Brucellae. Vet Microbiol 90:249–261

    Article  CAS  PubMed  Google Scholar 

  22. Alexander B, Schnurrenberger PR, Brown RR (1981) Numbers of Brucella abortus in the placenta, umbilicus and fetal fluid of two naturally infected cows. Vet Rec 108:500

    Article  CAS  PubMed  Google Scholar 

  23. Samartino L, Enright FM (1993) Pathogenesis of abortion of bovine brucellosis. Comp Immunol Microbiol Infect Dis 16:95–101

    Article  CAS  PubMed  Google Scholar 

  24. Smith H, Williams AE, Pearce JH, Keppie J, Harris-Smith PW, Fitz-George RB, Witt K (1962) Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature 193:47–49

    Article  CAS  PubMed  Google Scholar 

  25. Williams A, Keppie J, Smith H (1962) The chemical basis of the virulence of Brucella abortus. III. Foetal erythritol a cause of the localisation of Brucella abortus in pregnant cows. Br J Exp Pathol 43:530–537

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Contag P (2008) Bioluminescence imaging to evaluate infections and host response in vivo. Methods Mol Biol 415:101–118

    CAS  PubMed  Google Scholar 

  27. Meighen E (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7:1016–1022

    CAS  PubMed  Google Scholar 

  28. Baldwin CL, Parent M (2002) Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet Microbiol 90:367–382

    Article  CAS  PubMed  Google Scholar 

  29. Ko J, Gendron-Fitzpatrick A, Ficht TA, Splitter GA (2002) Virulence criteria for Brucella abortus strains as determined by interferon regulatory factor 1-deficient mice. Infect Immun 70:7004–7012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ko J, Gendron-Fitzpatrick A, Splitter GA (2002) Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. J Immunol 168:2433–2440

    Article  CAS  PubMed  Google Scholar 

  31. Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL (2001) Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103:511–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rajashekara G, Krepps M, Eskra L, Mathison A, Montgomery A, Ishii Y, Splitter G (2005) Unraveling Brucella genomics and pathogenesis in immunocompromised IRF-1−/− mice. Am J Reprod Immunol 54:358–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants AI073558 and AI088038 and BARD grant US-4378-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Splitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Splitter, G. et al. (2014). Studying Host-Pathogen Interaction Events in Living Mice Visualized in Real Time Using Biophotonic Imaging. In: Vergunst, A., O'Callaghan, D. (eds) Host-Bacteria Interactions. Methods in Molecular Biology, vol 1197. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1261-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1261-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1260-5

  • Online ISBN: 978-1-4939-1261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics