Skip to main content

The Ring of Real-Valued Multivariate Polynomials: An Analyst’s Perspective

  • Chapter
  • First Online:
The Corona Problem

Part of the book series: Fields Institute Communications ((FIC,volume 72))

  • 1040 Accesses

Abstract

In this survey we determine an explicit set of generators of the maximal ideals in the ring \(\mathbb{R}[x_{1},\ldots,x_{n}]\) of polynomials in n variables with real coefficients and give an easy analytic proof of the Bass-Vasershtein theorem on the Bass stable rank of \(\mathbb{R}[x_{1},\ldots,x_{n}]\). The ingredients of the proof stem from different publications by Coquand, Lombardi, Estes and Ohm. We conclude with a calculation of the topological stable rank of \(\mathbb{R}[x_{1},\ldots,x_{n}]\), which seems to be unknown so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example in the case j = 2 and n = 3, \(x_{1}x_{2}\mapsto 0\), \(x_{1}x_{2}x_{3}\mapsto 0\) and \(x_{2} + x_{3}\mapsto x_{3}\).

  2. 2.

    For later purposes we note that, by the same reason, if I and P are ideals, P prime and \(I \subseteq P\), then there exist minimal prime ideals P min with \(I \subseteq P_{min} \subseteq P\).

  3. 3.

    If i = 1, then we consider IR (a 0).

References

  1. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), 13–14.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bass, K-theory and stable algebra, Publications Mathématiques de L’I.H.É.S., 22 (1964), 5–60.

    Google Scholar 

  3. T. Coquand, H. Lombardi, A short proof for the Krull dimension of a polynomial ring, Amer. Math. Monthly 112 (2005), 826–829.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Estes, J. Ohm, Stable range in commutative rings, J. of Algebra 7 (1967), 343–362.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.R. Gabel, Lower bounds on the stable range of polynomial rings, Pacific J. Math. 61 (1975), 117–120.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. R. Gabel, A.V. Geramita, Stable range for matrices, J. Pure Appl. Algebra 5 (1974), 97–112.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Heitmann, Generating ideals in Prüfer domains, Pacific J. Math. 62 (1976), 117–126.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston 1970.

    MATH  Google Scholar 

  9. S. Lang, Algebra Springer, New York, 2002.

    Book  MATH  Google Scholar 

  10. T.W. Palmer, Banach algebras and the general theory of ∗-algebras, Vol 1, Cambridge Univ. Press, London, 1994.

    Google Scholar 

  11. O. Perron, Algebra I. Die Grundlagen, 2. Auflage, W. de Gruyter u. Co, Berlin, 1932.

    Google Scholar 

  12. A. Płoski, Algebraic dependence of polynomials after O. Perron and some applications,in: Computational commutative and non-commutative algebraic geometry,Proceedings of the NATO Advanced Research Workshop, Chisinau, Republic of Moldova, June 6–11, 2004. Ed.: Cojocaru, Svetlana et al., 167–174 (2005)

    Google Scholar 

  13. R. Rupp. Zerofree extension of continuous functions on a compact Hausdorff space, Topology Appl. 93 (1999), 65–71.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Vasershtein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102–110; translation from Funkts. Anal. Prilozh. 5 (1971), No.2, 17–27.

    Google Scholar 

Download references

Acknowledgements

We thank Leonhard Frerick for providing us the reference [12]; Witold Jarnicki for the proof of Theorem 19; Amol Sasane for the reference [1] as well as Peter Pflug and Thomas Schick for valuable comments yielding to a proof of \(\text{tsr}\mathbb{R}[x_{1},\ldots,x_{n}] \leq n + 1\) in Theorem 30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Mortini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mortini, R., Rupp, R. (2014). The Ring of Real-Valued Multivariate Polynomials: An Analyst’s Perspective. In: Douglas, R., Krantz, S., Sawyer, E., Treil, S., Wick, B. (eds) The Corona Problem. Fields Institute Communications, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1255-1_8

Download citation

Publish with us

Policies and ethics