Skip to main content

A Genetic Strategy to Obtain P-Gal4 Elements in the Drosophila Hox Genes

  • Protocol
  • First Online:
Hox Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1196))

Abstract

The Drosophila Gal4/UAS system allows the expression of any gene of interest in restricted domains. We devised a genetic strategy, based on the P-element replacement and UAS-y + techniques, to generate Gal4 lines inserted in Hox genes of Drosophila that are, at the same time, mutant for the resident genes. This makes possible to express different wild-type or mutant Hox proteins in the precise domains of Hox gene expression, and thus to test the functional value of these proteins in mutant rescue experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413–1422

    Article  CAS  PubMed  Google Scholar 

  2. Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362

    Article  CAS  PubMed  Google Scholar 

  3. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  CAS  PubMed  Google Scholar 

  4. Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

    Article  CAS  PubMed  Google Scholar 

  5. Greer JM, Puetz J, Thomas KR et al (2000) Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Potter SS (2001) Functional specificity of the Hoxa13 homeobox. Development 128:3197–3207

    CAS  PubMed  Google Scholar 

  7. Zhao Y, Potter SS (2002) Functional comparison of the Hoxa4, Hoxa10 and Hoxa11 homeoboxes. Dev Biol 244:21–36

    Article  CAS  PubMed  Google Scholar 

  8. Greig S, Akam M (1995) The role of homeotic genes in the specification of the Drosophila gonad. Curr Biol 5:1057–1062

    Article  CAS  PubMed  Google Scholar 

  9. Casares F, Calleja M, Sánchez-Herrero E (1996) Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila Hox genes. EMBO J 15:3934–3942

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hirth F, Loop T, Egger B et al (2001) Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development 128:4781–4788

    CAS  PubMed  Google Scholar 

  11. Gehring WJ, Affolter M, Bürglin T (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526

    Article  CAS  PubMed  Google Scholar 

  12. Merabet S, Hudry B, Saadaoui M et al (2009) Classification of sequence signatures: a guide to Hox protein function. Bioessays 31:500–511

    Article  CAS  PubMed  Google Scholar 

  13. Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288:2013–2018

    Article  CAS  PubMed  Google Scholar 

  14. Hittinger CT, Stern DL, Carroll SB (2005) Pleiotropic functions of a conserved insect-specific Hox peptide motif. Development 132:5261–5270

    Article  CAS  PubMed  Google Scholar 

  15. O’Keefe DD, Thor S, Thomas JB (1998) Function and specificity of LIM domains in Drosophila nervous system and wing development. Development 125:3915–3923

    PubMed  Google Scholar 

  16. Rincón-Limas DE, Lu CH, Canal I et al (2000) The level of DLDB/CHIP controls the activity of the LIM homeodomain protein Apterous: evidence for a functional tetramer complex in vivo. EMBO J 19:2602–2614

    Article  PubMed Central  PubMed  Google Scholar 

  17. Engels WR (1996) P-elements in Drosophila. In: Saedler H, Gierl A (eds) Transposable elements. Springer, Berlin, pp 103–123

    Chapter  Google Scholar 

  18. Sepp KJ, Auld VJ (1999) Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics 151:1093–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Calleja M, Moreno E, Pelaz S et al (1996) Visualization of gene expression in living adult Drosophila. Science 274:252–255

    Article  CAS  PubMed  Google Scholar 

  20. Engström Y, Schneuwly S, Gehring WJ (1992) Spatial and temporal expression of an Antennapedia/lacZ gene construct integrated into the endogenous Antennapedia gene of Drosophila melanogaster. Roux’s Arch Dev Biol 201:65–80

    Article  Google Scholar 

  21. Galloni M, Gyurkovics H, Schedl P et al (1993) The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J 12:1087–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  22. McCall K, O’Connor MB, Bender W (1994) Enhancer traps in the Drosophila bithorax complex mark parasegmental domains. Genetics 138:389–399

    Google Scholar 

  23. Casares F, Bender W, Merriam J et al (1997) Interactions of Drosophila Ultrabithorax regulatory regions with native and foreign promoters. Genetics 145:123–137

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhou J, Levine M (1999) A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell 99:567–575

    Article  CAS  PubMed  Google Scholar 

  25. Barges S, Mihaly J, Galloni M et al (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127:779–790

    CAS  PubMed  Google Scholar 

  26. Bender W, Hudson A (2000) P element homing to the Drosophila bithorax complex. Development 127:3981–3992

    CAS  PubMed  Google Scholar 

  27. Fitzgerald DP, Bender W (2001) Polycomb group repression reduces DNA accessibility. Mol Cell Biol 21:6585–6597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Estrada B, Casares F, Busturia A et al (2002) Genetic and molecular characterization of a novel iab-8 regulatory domain in the Abdominal-B gene of Drosophila melanogaster. Development 129:5195–5204

    CAS  PubMed  Google Scholar 

  29. de Navas LF, Foronda D, Suzanne M et al (2006) A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 123:860–867

    Article  PubMed  Google Scholar 

  30. Hudry B, Viala S, Graba Y et al (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Dev Biol 9:5

    Article  CAS  Google Scholar 

  31. Robertson HM, Preston CR, Phillis RW et al (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Reuter G, Hoffmann G, Dorn R et al (1993) Construction and characterization of a TM3 balancer carrying P[(ry+) ∆2-3] as a stable transposase source. Dros Info Serv 72:78–79

    Google Scholar 

  33. Engels WR, Johnson-Schlitz DM, Eggleston WB et al (1990) High-frequency P element loss in Drosophila is homolog dependent. Cell 62:515–525

    Article  CAS  PubMed  Google Scholar 

  34. Gloor GB, Nassif NA, Johnson-Schlitz DM et al (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253:1110–1117

    Article  CAS  PubMed  Google Scholar 

  35. Gohl DM, Silies MA, Gao XJ et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 107:6166–61671

    Google Scholar 

  38. Nassif N, Penney J, Pal S et al (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14:1613–1625

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory is being supported by a grant from the Spanish Ministerio de Economía y Competitividad (BFU2011-26075) and an institutional grant from the Fundación Ramón Areces. Delia del Saz is being supported by an FPI fellowship from the Spanish Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Sánchez-Herrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Navas, L., Foronda, D., del Saz, D., Sánchez-Herrero, E. (2014). A Genetic Strategy to Obtain P-Gal4 Elements in the Drosophila Hox Genes. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics