Skip to main content

Pupillometry and Memory: External Signals of Metacognitive Control

  • Chapter
  • First Online:
Handbook of Biobehavioral Approaches to Self-Regulation

Abstract

For centuries, researchers have examined the dynamics of pupil dilation and constriction, as it is well known that pupil size is affected by many physical stimuli, including ambient lighting and temperature (e.g., Fontana, Dei moti dell’iride, 1765). Less well known is that the pupils also dilate in response to nonphysical stimuli, such as emotions and thoughts. These latter changes, phasic pupillary reflexes, follow the onset of cognitive processing. The neurophysiological mechanisms of these reflexes have been attributed to autonomic nervous system activity, including parasympathetic nervous system areas that are controlled by the locus coeruleus–norepinephrine (LC-NE) system of the brain. Tight correspondences between single-cell firing rates in the monkey LC-NE system and concomitant pupil dilation/constriction suggest that the LC-NE system is critically involved in controlling phasic pupillary changes. Relevant to students of memory, the LC-NE system is also involved in memory consolidation, and is active during retrieval. Animal models reveal close correspondence between accurate learning and memory and the involvement of the autonomic system, and stimulation of the vagus nerve is associated with memory formation and consolidation. Because of the connection between pupillary reflexes and neuroanatomical structures related to memory, researchers have recently used pupillometry to investigate questions of human memory. In this chapter, we review that evidence, and discuss phasic pupillary reflexes in relation to subjective feelings of memory, including feelings of future memory during learning. Such findings suggest a tight connection between pupillary changes and self-regulated cognition, and point toward new approaches to study the motivation–cognition interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, a recent ocular-health trend inspired by Lady Gaga, the use of “circle lenses,” is designed to do the same thing, but without drugs. Because of the physical risks (such as blindness!), the FDA never approved their use in the USA.

References

  • Aboyoun, D. C., & Dabbs, J. N. (1998). The Hess pupil dilation findings: Sex or novelty? Social Behavior and Personality, 26, 415–419. doi:10.2224/sbp.1998.26.4.415.

    Google Scholar 

  • Ahern, S. K., & Beatty, J. (1979). Pupillary responses during information processing vary with scholastic aptitude test scores. Science, 205, 1289–1292. doi:10.1126/science.472746.

    PubMed  Google Scholar 

  • Ahern, S. K., & Beatty, J. (1981). Physiological evidence that demand for processing capacity varies with intelligence. In M. P. Friedman, J. P. Das, & N. O’Connor (Eds.), Intelligence and learning (pp. 121–128). New York: Plenum.

    Google Scholar 

  • Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501–520.

    PubMed  Google Scholar 

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. doi: 10.1146/annurev.neuro.28.061604.135709.

    PubMed  Google Scholar 

  • Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14, 4467–4460.

    PubMed  Google Scholar 

  • Aston-Jones, G., Rajkowski, J., & Kubiak, P. (1997). Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience, 80, 697–715. doi:10.1016/S0306-4522(97)00060-2.

    PubMed  Google Scholar 

  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292. doi: 10.1037/0033-2909.91.2.276.

    PubMed  Google Scholar 

  • Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. Psychonomic Science, 5, 371–372.

    Google Scholar 

  • Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (2nd ed., pp. 142–162). New York: Cambridge University Press.

    Google Scholar 

  • Bernick, N., Kling, A., & Borowitz, G. (1971). Physiologic differentiation of sexual arousal and anxiety. Psychosomatic Medicine, 33, 341–352.

    PubMed  Google Scholar 

  • Berrien, F. K., & Huntington, G. H. (1943). An exploratory study of pupillary responses during deception. Journal of Experimental Psychology, 32, 443–449. doi:10.1037/h0063488.

    Google Scholar 

  • Bradshaw, J. L. (1968). Pupil-size and problem solving. Quarterly Journal of Experimental Psychology, 20, 116–122. doi:10.1080/14640746808400139.

    PubMed  Google Scholar 

  • Buchanan, T. W., Etzel, J. A., Adolphs, R., & Tranel, D. (2006). The influence of autonomic arousal and semantic relatedness on memory for emotional words. International Journal of Psychophysiology, 61, 26–33. doi: 10.1016/j.ijpsycho.2005.10.022.

    PubMed  Google Scholar 

  • Cansino, S., & Trejo-Morales, P. (2008). Neurophysiology of successful encoding and retrieval of source memory. Cognitive, Affective, and Behavioral Neuroscience, 8, 85–98. doi: 10.3758/CABN.8.1.85.

    Google Scholar 

  • Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A., & Jensen, R. A. (1999). Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neuroscience, 2, 94–98. doi: 10.1038/4600.

    PubMed  Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324.

    PubMed  PubMed Central  Google Scholar 

  • Coull, J. T., Büchel, C., Friston, K. J., & Frith, C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroimage, 10, 705–715.

    PubMed  Google Scholar 

  • Croiset, G., Nijsen, M. J., & Kamphuis, P. J. (2000). Role of corticotropin-releasing factor, vasopressin and the autonomic nervous system in learning and memory. European Journal of Pharmacology, 405, 225–234.

    PubMed  Google Scholar 

  • Darwin, C. R. (1872). The expression of the emotions in man and animals. London: John Murray.

    Google Scholar 

  • Duarte, A., Ranganath, C., Winward, L., Hayward, D., & Knight, R. T. (2004). Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Cognitive Brain Research, 18, 255–272. doi: 10.1016/j .cogbrainres.2003 .10.010.

    PubMed  Google Scholar 

  • Dureman, I., & Scholander, T. (1962). Studies in the psychosensory pupillary reflex. I. Habituation to auditory stimuli. Journal of Psychosomatic Research, 6, 49–54.

    PubMed  Google Scholar 

  • Einhauser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Science of the United States of America, 105, 1704–1709. doi: 10.1073/pnas.0707727105.

    Google Scholar 

  • Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning. Nature Neuroscience. doi: 10.1038/nn.3428.

    Google Scholar 

  • Eschenko, O., & Sara, S. J. (2008). Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: Brain stem-cortex interplay for memory consolidation? Cerebral Cortex, 18, 2596–2603. doi: 10.1093/cercor/bhn020.

    PubMed  Google Scholar 

  • Fontana, F. (1765). Dei moti dell’iride. Lucca: J. Giusti.

    Google Scholar 

  • Foote, S. L., & Morrison, J. H. (1987). Development of the noradrenergic, serotonergic, and dopaminergic innervation of neocortex. Current Topics in Developmental Biology, 21, 391–423.

    PubMed  Google Scholar 

  • Forbes, T. R. (1977). Why is it called ‘beautiful lady’? A note on belladonna. Bulletin of the New York Academy of Medicine, 53, 403–406.

    PubMed  PubMed Central  Google Scholar 

  • Gabay, S., Pertzov, Y., & Henik, A. (2011). Orienting of attention, pupil-size, and the norepinephrine system. Attention, Perception & Psychophysics, 73, 123–129. doi: 10.3758/s13414-010-0015-4.

    Google Scholar 

  • Gardner, R. M., Mo, S. S., & Borrego, R. (1974a). Inhibition of pupillary orienting reflex by novelty in conjunction with recognition memory. Bulletin of the Psychonomic Society, 3, 237–238.

    Google Scholar 

  • Gardner, R. M., Mo, S. S., & Krinsky, R. (1974b). Inhibition of pupillary orienting reflex by heteromodal novelty. Bulletin of the Psychonomic Society, 4, 510–512.

    Google Scholar 

  • Gardner, R. M., Philp, P., & Radacy, S. (1978). Pupillary changes during recall in children. Journal of Experimental Child Psychology, 25(1), 168–172. doi:10.1016/0022-0965(78)90046-2

    Google Scholar 

  • Gianaros, P. J., Van Der Veen, F. M., & Jennings, J. R. (2004). Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: Implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology, 41, 521–530. doi: 10.1111/1469-8986 .2004.00179.x.

    PubMed  Google Scholar 

  • Gilzenrat, M. S., Cohen, J. D., Rajkowski, J., & Aston-Jones, G. (2003). Pupil dynamics predict changes in task engagement mediated by locus coeruleus. Society for Neuroscience Abstracts, 515.19.

    Google Scholar 

  • Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269. doi: 10.3758/CABN.10.2.252.

    Google Scholar 

  • Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21, 90–95. doi: 10.1177/0963721412436811.

    Google Scholar 

  • Goldinger, S. D., He, Y., & Papesh, M. H. (2009). Deficits in cross-race face learning: Insights from eye-movements and pupillometry. Journal of Experimental Psychology: Learning, Memory and Cognition, 35, 1105–1122. doi: 10.1037/a0016548.

    Google Scholar 

  • Goldwater, B. C. (1972). Psychological significance of pupillary movements. Psychological Bulletin, 77, 340–355. doi: 10.1037/h0032456.

    PubMed  Google Scholar 

  • Groves, D. A., & Brown, V. J. (2005). Vagus nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience & Biobehavioral Reviews, 29, 493–500. doi:10.1016/j.neubiorev.2005.01.004.

    Google Scholar 

  • Guo, C., Duan, L., Li, W., & Paller, K. A. (2006). Distinguishing source memory and item memory: Brain potentials at encoding and retrieval. Brain Research, 1118, 142–154. doi: 10.1016/j.brainres.2006.08.034.

    PubMed  Google Scholar 

  • Hamel, R. F. (1974). Female subjective and pupillary reaction to nude male and female figures. The Journal of Psychology, 87, 171–175.

    PubMed  Google Scholar 

  • Heaver, B. (2012). Psychophysiological indices of recognition memory. Unpublished doctoral dissertation, University of Sussex.

    Google Scholar 

  • Heaver, B., & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory (Hove, England), 19, 398–405. doi: 10.1080/09658211.2011.575788.

    PubMed  Google Scholar 

  • Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology, 45, 119–129. doi: 10.1111/j.1469-8986.2007.00605.x.

    PubMed  Google Scholar 

  • Hess, E. H. (1965). Attitude and pupil size. Scientific American, 212, 46–54.

    PubMed  Google Scholar 

  • Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. Science, 132(3423), 349–350.

    PubMed  Google Scholar 

  • Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192.

    PubMed  Google Scholar 

  • Hess, E. H., Seltzer, A. L., & Schlien, J. M. (1965). Pupil response of hetero- and homosexual males to pictures of men and women: A pilot study. Journal of Abnormal Psychology, 70, 165–168.

    PubMed  Google Scholar 

  • Hou, R. H., Freeman, C., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181, 537–549. doi: 10.1007/s00213-005-0013-8.

    PubMed  Google Scholar 

  • Hupé, J. M., Lamirel, C., & Lorenceau, J. (2009). Pupil dynamics during bistable motion perception. Journal of Vision, 9, 10. doi: 10.1167/9.7.10.

    PubMed  Google Scholar 

  • Janisse, M. P. (1977). Pupillometry: The psychology of the pupillary response. Washington, DC: Hemisphere.

    Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47, 310–339.

    PubMed  Google Scholar 

  • Kafkas, A., & Montaldi, D. (2011). Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity. Quarterly Journal of Experimental Psychology, 64, 1971–1989. doi: 10.1080/17470218 .2011.588335.

    Google Scholar 

  • Kafkas, A., & Montaldi, D. (2012). Familiarity and recollection produce distinct eye movement, pupil and medial temporal lobe responses when memory strength is matched. Neuropsychologia, 50, 3080–3093. doi: 10.1016/j.neuropsychologia.2012.08.001.

    PubMed  Google Scholar 

  • Kahneman, D. (1973). Attention and effort. New York: Prentice Hall.

    Google Scholar 

  • Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585. doi: 10.1126/science.154.3756.1583.

    PubMed  Google Scholar 

  • Kahneman, D., Beatty, J., & Pollack. I. (1967). Perceptual deficit during a mental task. Science, 157, 218–219. doi: 10.1126/science.157.3785.218.

    PubMed  Google Scholar 

  • Kapur, S., Tulving, E., Cabeza, R., McIntosh, A. R., Houle, S., & Craik, F. I. M. (1996). The neural correlates of intentional learning of verbal materials: A PET study. Cognitive Brain Research, 4, 243–249. doi: 10.1016/S0926-6410(96)00058-4.

    PubMed  Google Scholar 

  • Karatekin, C., Couperus, J. W., & Marcus, D. J. (2004). Attention allocation in the dual-task paradigm as measured through behavioral and psychophysiological responses. Psychophysiology, 41, 175–185. doi: 10.1111/j.1469-8986.2004.00147.x.

    PubMed  Google Scholar 

  • Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology, 48, 323–332. doi: 10.1111/j.1469-8986.2010.01069.x.

    PubMed  Google Scholar 

  • Koss, M. (1986). Pupillary dilation as an index of central nervous system α2-adrenoceptor activation. Journal of Pharmacology Methods, 15, 1–19.

    Google Scholar 

  • Kuchinke, L., Võ, M., L.-H., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65, 132–140.

    Google Scholar 

  • Laeng, B., Waterloo, K., Johnsen, S. H., Bakke, S. J., Låg, T., Simonsen, S. S., & Høgsæt, J. (2007). The eyes remember it: Oculography and pupillometry during recollection in three amnesic patients. Journal of Cognitive Neuroscience, 19(11), 1888–1904.

    PubMed  Google Scholar 

  • Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. Cognitive Processing, 12, 13–21.

    PubMed  PubMed Central  Google Scholar 

  • Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7, 18–27. doi: 10.1177/1745691611427305.

    Google Scholar 

  • Lawless, J. C., & Wake, F. R. (1969). Sex differences in pupillary response to visual stimuli. Psychophysiology, 5, 568.

    Google Scholar 

  • Loewenfeld, I. E. (1958). Mechanisms of reflex dilation of the pupil: Historical review and experimental analysis. Documenta Ophthalmologica, 12, 185–448.

    Google Scholar 

  • Loewenfeld, I. E. (1993). The pupil: Anatomy, physiology, and clinical applications. Detroit: Wayne State University Press.

    Google Scholar 

  • MacLachlan, C., & Howland, H. C. (2002). Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic and Physiological Optics, 22, 175–182.

    PubMed  Google Scholar 

  • Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. In Proceedings from the IEEE 7th conference on human factors and power plants, 7-5-7-9. doi: 10.1109/HFPP.2002.1042860.

    Google Scholar 

  • Maw, N. N., & Pomplun, M. (2004). Studying human face recognition with the gaze-contingent window technique. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the twenty-sixth annual meeting of the cognitive science society. Chicago, Illinois: Cognitive Science Society.

    Google Scholar 

  • Mentz, P. (1895). Die wirkung akustischer sinnesreize auf puls und athmung. Philosophische Studien, 11, 61–124.

    Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Otero, S. C., Weekes, B. S., & Hutton, S. B. (2011). Pupil size changes during recognition memory. Psychophysiology, 48, 1346–1353. doi: 10.1111/j.1469-8986.2011.01217.x.

    PubMed  Google Scholar 

  • Papesh, M. H., & Goldinger, S. D. (2011). Your effort is showing! Pupil dilation reveals memory heuristics. In P. Higham & J. Leboe (Eds.), Constructions of remembering and metacognition (pp. 215–224). Palgrave Macmillan.

    Google Scholar 

  • Papesh, M. H., & Goldinger, S. D. (2012). Pupil-blah-metry: Cognitive effort in speech planning reflected by pupil dilation. Attention, Perception, & Psychophysics, 74, 754–765. doi: 10.3758/s13414-011-0263-y.

    Google Scholar 

  • Papesh, M. H., Goldinger, S. D., & Hout, M. C. (2012). Memory strength and specificity revealed by pupillometry. International Journal of Psychophysiology, 83, 56–64. doi: 10.1016/j.ijpsycho.2011.10.002.

    PubMed  PubMed Central  Google Scholar 

  • Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59, 185–198. doi: 10.1016/S1071-5819(03)00017-X.

    Google Scholar 

  • Payne, D. T., Parry, M. K., & Harasymiw, S. J. (1968). Percentage of pupillary dilation as a measure of item difficulty. Perception & Psychophysics, 4, 139–143. doi: 10.3758/BF03210453.

    Google Scholar 

  • Peavler, W. S., & McLaughlin, J. P. (1967). The question of stimulus content and pupil-size. Psychonomic Science, 8, 505–506.

    Google Scholar 

  • Phillips, M. A., Bitsios, P., Szabadi, E., & Bradshaw, C. M. (2000a). Comparison of the antidepressants reboxetine, fluvoxamine and amitriptyline upon spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology, 149, 72–76. doi: 10.1007/s002139900334.

    Google Scholar 

  • Phillips, M. A., Szabadi, E., & Bradshaw, C. M. (2000b). Comparison of the effects of clonidine and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology, 150, 85–89. doi: 10.1046/ j.1365- 2125.2000.00225.x.

    Google Scholar 

  • Porter, G., & Troscianko, T. (2003). Pupillary response to grating stimuli. Perception, 32, 156.

    Google Scholar 

  • Porter, G., Troscianko, T., & Gilchrist, I. D. (2007). Effort during visual search and counting: Insights from pupillometry. Quarterly Journal of Experimental Psychology, 60, 211–229.

    Google Scholar 

  • Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society of Neuroscience Abstracts, 19, 974.

    Google Scholar 

  • Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin, 35, 607–616.doi: 10.1016/0361-9230(94)90175-9.

    PubMed  Google Scholar 

  • Rajkowski, J., Majczynski, H., Clayton, E., & Aston-Jones, G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology, 92, 361–371.

    PubMed  Google Scholar 

  • Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. D. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42, 2–13. doi: 10.1016/j.neuropsychologia .2003.07.006.

    PubMed  Google Scholar 

  • Roubinovitch, J. (1900). Des variations du diamétre pupillaire en rapport avec l’effort intellectuel. In P. Janet (Ed.), Quantriéme congres internationale de psychologie: Compte rendu des seances et texts des memoires, publies par les soins du Doctuer Pierre Janet. Paris: F Alcan.

    Google Scholar 

  • Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223. doi: 10.1038/nrn2573.

    PubMed  Google Scholar 

  • Steinhauer, S. R., & Hakerem, G. (1992). The pupillary response in cognitive psychophysiology and schizophrenia. Annals of the NY Academy of Sciences, 658, 182–204.

    Google Scholar 

  • Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervations of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52, 77–86. doi: 10.1016/j.ijpsycho.2003.12.005.

    PubMed  Google Scholar 

  • Sterpenich, V., D’Argembeau, A., Desseilles, M., Balteau, E., Albouy, G., Vandewalle, G., Degueldre, C., Luxen, A., Collette, F., & Maquet, P. (2006). The locus ceruleus is involved in the successful retrieval of emotional memories in humans. Journal of Neuroscience, 26, 7416–7423. doi: 10.1523/JNEUROSCI.1001-06.2006.

    PubMed  Google Scholar 

  • Tombs, S., & Silverman, I. (2004). Pupillometry: A sexual selection approach. Evolution and Human Behavior, 25, 221–228.

    Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). New York: Academic.

    Google Scholar 

  • van Rijn, H., Dalenberg, J. R., Borst, J. P., & Sprenger, S. A. (2012). Pupil dilation co-varies with memory strength of individual traces in a delayed response paired-associate task. PloS One, 7(12), e51134.

    PubMed  PubMed Central  Google Scholar 

  • Van Der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., Kramer, J., Warmuth, E., Heekeren, H. R., & Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47, 158–169.

    PubMed  Google Scholar 

  • Võ, M. L.-H., Jacobs, A. M., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., & Hutzler, F. (2008). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45, 130–140. doi: 10.1111/j.1469-8986.2008.00745.x.

    PubMed  Google Scholar 

  • Wilhelm, B., Wilhem, H., & Lűdtke, H. (1999). Pupillography: Principles and applications in basic and clinical research. In J. Kuhlmann & M. Böttcher (Eds.), Pupillography: Principles, methods and applications (pp. 1–11). Műnchen: Zuckschwerdt Verlag.

    Google Scholar 

  • Wilks, S. (1883). On the pupil in emotional states. Brain: A Journal Of Neurology, 6, 1–6. doi:10.1093/brain/6.1.1.

    Google Scholar 

  • Whittlesea, B. W. A. (1997). Production, evaluation and preservation of experiences: Constructive processing in remembering and performance tasks. In D. Medin (Ed.), The psychology of learning and motivation, 37 (pp. 221–264). New York: Academic.

    Google Scholar 

  • Whittlesea, B. W. A., & Leboe, J. (2000). The heuristic basis of remembering and classification: Fluency, generation and resemblance. Journal of Experimental Psychology: General, 129, 84–106.

    Google Scholar 

  • Whittlesea, B. W. A., & Williams, L. D. (1998). Why do strangers feel familiar, but friends don’t? A discrepancy-attribution account of feelings of familiarity. ACTA Psychologica, 98, 141–165.

    PubMed  Google Scholar 

  • Whittlesea, B. W. A., & Williams, L. D. (2001). The discrepancy-attribution hypothesis: I. The heuristic basis of feelings of familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 3–13.

    PubMed  Google Scholar 

  • Wixted, J. T. (2007). Dual-process theory and signal detection theory of recognition memory. Psychological Review, 114, 152–176. doi: 10.1037/0033-295X.114.1.152.

    PubMed  Google Scholar 

  • Wootton, A. C. (1910). Chronicles of pharmacy. London: Macmillan.

    Google Scholar 

  • Wyatt, H. J. (1995). The form of the human pupil. Vision Research, 35, 2021–2036.

    PubMed  Google Scholar 

  • Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517. doi: 10.1006/jmla.2002.2864.

    Google Scholar 

  • Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech perception in noise: The influence of age, hearing loss, and cognition on the pupil response. Ear & Hearing, 32, 498–510. doi: 10.1097/AUD.0b013e31820512bb.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan H. Papesh PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papesh, M., Goldinger, S. (2015). Pupillometry and Memory: External Signals of Metacognitive Control. In: Gendolla, G., Tops, M., Koole, S. (eds) Handbook of Biobehavioral Approaches to Self-Regulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1236-0_9

Download citation

Publish with us

Policies and ethics