Skip to main content

The Muscle Metaphor in Self-Regulation in the Light of Current Theorizing on Muscle Physiology

  • Chapter
  • First Online:
Handbook of Biobehavioral Approaches to Self-Regulation

Abstract

Self-regulation researchers have frequently compared self-regulation with a muscle postulating that self-regulatory activity resembles muscle activity. Self-regulation and muscle activity are supposed to require both energy resources and the depletion of these resources should underlie the performance decline after a strenuous self-regulatory activity (the ego-depletion effect), as well as the decrease in maximum muscle force after heavy physical exercise. The muscle metaphor also claims that self-regulation can be trained and strengthened like a muscle. Repeatedly performing self-regulatory tasks should lead to higher self-regulation capacities like repeatedly exercising a muscle leads to increased muscle force and endurance. Drawing on a presentation of recent research and theorizing on the mechanisms of muscle contraction and metabolism, we discuss the muscle metaphor’s ideas of muscle fatigue, energy depletion, and muscle training. We show that muscle metabolism and muscle training are highly complex processes that are not adequately captured by the muscle metaphor. In particular, the muscle metaphor creates the impression that resource depletion is the sole (or main) determinant of muscle fatigue. This contrasts with the physiological literature that discusses resource depletion as one among several factors involved in muscle fatigue and that does not agree on its importance for muscle fatigue. We also discuss the advantages and drawbacks of using the muscle metaphor’s oversimplified model of muscle functioning in self-regulation research.

This research was supported by a research grant (0014_134586) from the Swiss National Science Foundation awarded to the first author. We are grateful to Kerstin Brinkmann and Nicolas Silvestrini for comments on an early version of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Good general introductions to muscle physiology can be found in Brooks et al. (2005), McArdle et al. (2010), Scott (2008), Sahlin et al. (1998), Sherwood (2010), or Westerblad et al. (2010).

References

  • Allen, D. G., Lännergren, J., & Westerblad, H. (2002). Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres. Pflügers Archiv—European Journal of Physiology, 443, 836–842. doi:10.1007/s00424-001-0756-y.

    Article  PubMed  Google Scholar 

  • Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Physiological Review, 88, 287–332. doi:10.1152/physrev.00015.2007.

    Article  Google Scholar 

  • Baker, A. J., Kostov, K. G., Miller, R. G., & Weiner, M. W. (1993). Slow force recovery after long-duration exercise: Metabolic and activation factors in muscle fatigue. Journal of Applied Physiology, 74(5), 2294–2300.

    PubMed  Google Scholar 

  • Baker, A. J., Carson, P. J., Miller, R. G., & Weiner, M. W. (1994). Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR. Muscle & Nerve, 17, 1002–1009. doi:10.1002/mus.880170907.

    Article  Google Scholar 

  • Baldwin, J., Snow, R. J., Gibala, M. J., Garnham, A., Howarth, K., & Febbraio, M. A. (2003). Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. Journal of Applied Physiology, 94, 2181–2187. doi:10.1152/japplphysiol.00866.2002.

    PubMed  Google Scholar 

  • Baumeister, R. F. (2002). Ego depletion and self-control failure: An energy model of the self’s executive function. Self and Identity, 1, 129–136. doi:10.1080/152988602317319302.

    Article  Google Scholar 

  • Baumeister, R. F. (2012). Self-control: The moral muscle. The Psychologist, 25(2), 112–115.

    Google Scholar 

  • Baumeister, R. F., & Vohs, K. D. (2007). Self-regulation, ego depletion, and motivation. Social and Personality Psychology Compass, 1, 1–14. doi:10.1111/j.1751-9004.2007.00001.x.

    Article  Google Scholar 

  • Baumeister, R. F., Muraven, M., & Tice, D. M. (2000). Ego depletion: A resource model of volition, self-regulation, and controlled processing. Social Cognition, 18, 130–150. doi:10.1521/soco.2000.18.2.130.

    Article  Google Scholar 

  • Baumeister, R. F., Gailliot, M., DeWall, C. N., & Oaten, M. (2006). Self-regulation and personality: How interventions increase regulatory success, and how depletion moderates the effects of traits on behavior. Journal of Personality, 74, 1773–1801. doi:10.1111/j.1467-6494.2006.00428.x.

    Article  PubMed  Google Scholar 

  • Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength-model of self-control. Current Directions in Psychological Science, 16, 351–355. doi:10.1111/j.1467-8721.2007.00534.x.

    Article  Google Scholar 

  • Beedie, C. J., & Lane, A. M. (2012). The role of glucose in self-control: Another look at the evidence and an alternative conceptualization. Personality and Social Psychology Review, 16, 143–153. doi:10.1177/1088868311419817.

    Article  PubMed  Google Scholar 

  • Boyd, R. (1993). Metaphor and theory change: What is ‘metaphor’ a metaphor for? In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 481–533). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Brooks, G. A., Fahey, T. D., & Baldwin, K. M. (2005). Exercise physiology: Human bioenergetics and its application (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Callow, M., Morton, A., & Guppy, M. (1986). Marathon fatigue: The role of plasma fatty acids, muscle glycogen and blood glucose. European Journal of Applied Physiology and Occupational Physiology, 55, 654–661. doi:10.1007/BF00423212.

    Article  PubMed  Google Scholar 

  • Chin, E. R., & Allen, D. G. (1997). Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. Journal of Physiology, 498(1), 17–29.

    PubMed  PubMed Central  Google Scholar 

  • Dawson, M. J., Gadian, D. G., & Wilkie, D. R. (1978). Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature, 274, 861–866. doi:10.1038/274861a0.

    Article  PubMed  Google Scholar 

  • Fitts, R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews, 74(1), 49–94.

    PubMed  Google Scholar 

  • Fitts, R. H. (2004). Mechanisms of muscular fatigue. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 279–300). Basel: Karger.

    Google Scholar 

  • Fitts, R. H., & Holloszy, J. O. (1976). Lactate and contractile force in frog muscle during development of fatigue and recovery. American Journal of Physiology, 231(2), 430–433.

    PubMed  Google Scholar 

  • Fry, A. C. (2004). The role of resistance exercise intensity on muscle fibre adaptions. Sports Medicine, 34, 663–679. doi:10.2165/00007256-200434100-00004.

    Article  PubMed  Google Scholar 

  • Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., & …Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325–336. doi:10.1037/0022-3514.92.2.325.

    Article  PubMed  Google Scholar 

  • Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789.

    PubMed  Google Scholar 

  • Greenhaff, P. L., Hultman, E., & Harris, R. C. (2004). Carbohydrate metabolism. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 108–151). Basel: Karger.

    Google Scholar 

  • Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136, 495–525. doi:10.1111/j.1751-9004.2007.00001.x.

    Article  PubMed  Google Scholar 

  • Holloszy, J. O., & Coyle, E. F. (1984). Adaptions of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology, 56(4), 831–838.

    PubMed  Google Scholar 

  • Homsher, E. (1987). Muscle enthalpy production and its relationship to actomyosin ATPase. Annual Review of Physiology, 49, 673–690. doi:10.1146/annurev.ph.49.030187.003325.

    Article  PubMed  Google Scholar 

  • Inzlicht, M., & Schmeichel, B. J. (2012). What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspectives on Psychological Science, 7, 450–463. doi:10.1177/1745691612454134.

    Article  Google Scholar 

  • Job, V., Dweck, C. S., & Walton, G. M. (2010). Ego depletion-Is it all in your head? Implicit theories about willpower affect self-regulation. Psychological Science, 21, 1686–1693. doi:10.1177/0956797610384745.

    Article  PubMed  Google Scholar 

  • Karatzaferi, C., de Haan, A., Ferguson, R. A., van Mechelen, W., & Sargeant, A. J. (2001). Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Archiv—European Journal of Physiology, 442, 467–474. doi:10.1007/s004240100552.

    Article  PubMed  Google Scholar 

  • Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: Physiological mechanisms of adaption. Exercise & Sport Sciences Reviews, 24, 363–398. doi:00003677-199600240-00014.

    Article  Google Scholar 

  • Kushmerick, M. J. (1983). Energetics of muscle contraction. In L. D. Peachey, R. H. Adrian, & S. R. Geiger (Eds.), Handbook of physiology (pp. 189–236). Baltimore: American Physiological Society.

    Google Scholar 

  • Lopez, R. B., Vohs, K. D., Wagner, D. D., & Heatherton, T. F. (in press). Self-regulatory strength: Neural mechanisms and implications for training. In G. H. E. Gendolla, M. Tops, & S. Koole (Eds.), Biobehavioral approaches to self-regulation. New York: Springer.

    Google Scholar 

  • MacIntosh, B. R., & Shahi, R. S. (2011). A peripheral governor regulates muscle contraction. Journal of Applied Physiology: Nutrition and Metabolism, 36, 1–11. doi:10.1139/H10-073.

    Google Scholar 

  • MacIntosh, B. R., Holash, R. J., & Renaud, J.-M. (2012). Skeletal muscle fatigue: Regulation of excitation-contraction coupling to avoid metabolic catastrophe. Journal of Cell Science, 125, 2105–2114. doi:10.1242/jcs.093674.

    Article  PubMed  Google Scholar 

  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  • Molden, D. C., Hui, C. M., Scholer, A. A., Meier, B. P., Noreen, E. E., D’Agostino, P. R., & Martin, V. (2012). Motivational versus metabolic effects of carbohydrates on self-control. Psychological Science, 23, 1137–1144. doi:10.1177/0956797612439069.

    Article  PubMed  Google Scholar 

  • Poortmans, J. R. (2004). Protein Metabolism. In J. R. Poortmans (Ed.), Principles of exercise biochemistry (3rd ed., pp. 227–278). Basel: Karger.

    Google Scholar 

  • Sahlin, K., Edström, L., & Sjöholm, H. (1987). Force, relaxation and energy metabolism of rat soleus muscle during anaerobic contraction. Acta Physiologica Scandinavica, 129, 1–7. doi:10.1111/j.1748-1716.1987.tb08033.x.

    Article  PubMed  Google Scholar 

  • Sahlin, K., Cizinsky, S., Warholm, M., & Höberg, J. (1992). Repetitive static muscle contractions in humans: A trigger of metabolic and oxidative stress? European Journal of Applied Physiology and Occupational Physiology, 64, 228–236. doi:10.1007/BF00626285.

    Article  PubMed  Google Scholar 

  • Sahlin, K., Tonkonogi, M., & Söderlund, K. (1998). Energy supply and muscle fatigue in humans. Acta Physiologica Scandinavia, 162, 261–266. doi:10.1046/j.1365-201X.1998.0298 f.x.

    Article  Google Scholar 

  • Saltin, B., & Karlsson, J. (1971). Muscle glycogen utilization during work of different intensities. Advances in Experimental Medicine and Biology, 11, 289–299. doi:10.1007/978-1-4613-4609-825.

    Article  Google Scholar 

  • Saugen, E., Vollestad, N. K., Gibson, H., Martin, P. A., & Edwards, R. H. T. (1997). Dissociation between metabolic and contractile responses during intermittent isometric exercise in man. Experimental Physiology, 82(1), 213–226.

    PubMed  Google Scholar 

  • Scott, C. B. (2008). A primer for the exercise and nutrition sciences: Thermodynamics, bioenergetics, metabolism. Totowa: Humana Press.

    Book  Google Scholar 

  • Sherwood, L. (2010). Human physiology: From cells to systems (7th ed.). Belmont: Brooks/Cole.

    Google Scholar 

  • Tiidus, P. M., Tupling, A. R., & Houston, M. E. (2012). Biochemistry primer for exercise science (4th ed.). Champaign: Human Kinetics.

    Google Scholar 

  • Westerblad, H., Allen, D. G., Bruton, J. D., Andrade, F. H., & Lännergren, J. (1998). Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiologica Scandinavica, 162, 253–260. doi:10.1046/j.1365-201X.1998.0301 f.x.

    Article  PubMed  Google Scholar 

  • Westerblad, H., Allen, D. G., & Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? Physiology, 17(1), 17–21.

    Google Scholar 

  • Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research, 316, 3093–3099. doi:10.1016/j.yexcr.2010.05.019.

    Article  PubMed  Google Scholar 

  • Wright, R. A., Patrick, B. M., Thomas, C., & Barreto, P. (2013). When fatigue promotes striving: Confirmation that success importance moderates resource depletion influence on effort-related cardiovascular response. Biological Psychology, 93, 316–324. doi:10.1016/j.biopsycho.2013.02.016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richter, M., Stanek, J. (2015). The Muscle Metaphor in Self-Regulation in the Light of Current Theorizing on Muscle Physiology. In: Gendolla, G., Tops, M., Koole, S. (eds) Handbook of Biobehavioral Approaches to Self-Regulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1236-0_5

Download citation

Publish with us

Policies and ethics