Skip to main content

Modulation of TRPM1 and the mGluR6 Cascade in ON Bipolar Cells

  • Chapter
  • First Online:
G Protein Signaling Mechanisms in the Retina

Part of the book series: Springer Series in Vision Research ((SSVR,volume 3))

  • 842 Accesses

Abstract

In the retina, cones contact two types of bipolar cells, releasing the same transmitter onto each. Since the two types of bipolar cells must respond to light (and therefore cone transmitter) with opposite polarities, each has evolved very different postsynaptic mechanisms to solve this problem. The OFF bipolar cell expresses ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and kainate glutamate receptors, conferring depolarization during photoreceptor transmitter release. However, the requirement for a hyperpolarizing action of glutamate at ON bipolar cells ruled out the use of ionotropic receptors at this synapse. Years of investigation by a number of different laboratories have revealed this highly novel, perhaps unique mechanism by which activation of a glutamate receptor, metabotropic glutamate receptor type 6 (mGluR6), results in membrane hyperpolarization. The photoreceptor–ON bipolar cell synapse must also be adaptive, enhancing rapid changes in illumination while attenuating slower, more long-lasting changes in order to avoid saturation of downstream synapses. Calcium appears to play a major role in this form of short-term plasticity. Finally, recent evidence suggests that the gain of this synapse is additionally regulated by ambient light levels. Both cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) and protein kinase C (PKC) appear to play key roles in these forms of long-term plasticity. Sections “ON Bipolar Cells and the mGluR6 Pathway: A Brief History” and “Elucidation of the mGluR6 Signaling Cascade” of this chapter summarize what is currently known about this synaptic pathway, with an emphasis on the major historical breakthroughs that shaped our understanding of this exceedingly complex synapse along the way. Sections “Modulation of the mGluR6 Cascade: Ca2+”, “Modulation of the mGluR6 Cascade: cGMP”, and “Modulation of the mGluR6 Cascade: PKC and DAG” summarize the roles of Ca2+, cGMP, and PKC in the regulation of this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J Physiol 207(3):623–633

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 32(3):339–355

    CAS  PubMed  Google Scholar 

  3. Fain GL (1975) Interactions of rod and cone signals in the mudpuppy retina. J Physiol 252(3):735–769

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Stell WK (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Am J Anat 121(2):401–423

    CAS  PubMed  Google Scholar 

  5. Stell WK, Ishida AT, Lightfoot DO (1977) Structural basis for on-and OFF-center responses in retinal bipolar cells. Science 198(4323):1269–1271

    CAS  PubMed  Google Scholar 

  6. Ishida AT, Stell WK, Lightfoot DO (1980) Rod and cone inputs to bipolar cells in goldfish retina. J Comp Neurol 191(3):315–335

    CAS  PubMed  Google Scholar 

  7. Cajal SRy (1892) La retine des vertabres. Cellule 9:121–225

    Google Scholar 

  8. Scholes JH (1975) Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philos Trans R Soc Lond B Biol Sci 270(902):61–118

    CAS  PubMed  Google Scholar 

  9. Parthe V (1972) Horizontal, bipolar and oligopolar cells in the teleost retina. Vision Res 12(3):395–406

    CAS  PubMed  Google Scholar 

  10. Saito T, Kondo H, Toyoda JI (1979) Ionic mechanisms of two types of on-center bipolar cells in the carp retina. I. The responses to central illumination. J Gen Physiol 73(1):73–90

    CAS  PubMed  Google Scholar 

  11. Kondo H, Toyoda J-I (1980) Dual effect of glutamate and aspartate on the on-center bipolar cell in the carp retina. Brain Res 199(1):240–243

    CAS  PubMed  Google Scholar 

  12. Saito T, Kujiraoka T (1982) Physiological and morphological identification of two types of on-center bipolar cells in the carp retina. J Comp Neurol 205(2):161–170

    CAS  PubMed  Google Scholar 

  13. Saito T, Kondo H, Toyoda J-i (1978) Rod and cone signals in the on-center bipolar cell: their different ionic mechanisms. Vision Res 18(5):591–595

    CAS  PubMed  Google Scholar 

  14. Saito T, Kondo H (1978) Ionic mechanisms underlying the center and surround responses of on-center bipolar cells in the carp retina. Sens Processes 2(4):350–358

    CAS  PubMed  Google Scholar 

  15. Saito T, Kaneko A (1983) Ionic mechanisms underlying the responses of OFF-center bipolar cells in the carp retina. I. Studies on responses evoked by light. J Gen Physiol 81(4):589–601

    CAS  PubMed  Google Scholar 

  16. Kaneko A, Shimazaki H (1975) Effects of external ions on the synaptic transmission from photorecptors to horizontal cells in the carp retina. J Physiol 252(2):509–522

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211(4478):182–185

    CAS  PubMed  Google Scholar 

  18. Shiells RA, Falk G, Naghshineh S (1981) Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294(5841):592–594

    CAS  PubMed  Google Scholar 

  19. Schiller PH, Sandell JH, Maunsell JH (1986) Functions of the ON and OFF channels of the visual system. Nature 322(6082):824–825

    CAS  PubMed  Google Scholar 

  20. Nawy S, Copenhagen DR (1987) Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 325(6099):56–58

    CAS  PubMed  Google Scholar 

  21. Grant GB, Dowling JE (1995) A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. J Neurosci 15(5 Pt 2):3852–3862

    CAS  PubMed  Google Scholar 

  22. Grant GB, Dowling JE (1996) ON bipolar cell responses in the teleost retina are generated by two distinct mechanisms. J Neurophysiol 76(6):3842–3849

    CAS  PubMed  Google Scholar 

  23. Adams PR, Brown DA (1982) Synaptic inhibition of the M-current: slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones. J Physiol 332(1):263–272

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Brown D (1988) M-currents: an update. Trends Neurosci 11(7):294–299

    CAS  PubMed  Google Scholar 

  25. Nawy S, Jahr CE (1990) Time-dependent reduction of glutamate current in retinal bipolar cells. Neurosci Lett 108(3):279–283

    CAS  PubMed  Google Scholar 

  26. Nawy S, Jahr CE (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346(6281):269–271

    CAS  PubMed  Google Scholar 

  27. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N et al (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268(16):11868–11873

    CAS  PubMed  Google Scholar 

  28. Nawy S (1999) The metabotropic receptor mGluR6 may signal through Go, but not phosphodiesterase, in retinal bipolar cells. J Neurosci 19(8):2938–2944

    CAS  PubMed  Google Scholar 

  29. Dhingra A, Lyubarsky A, Jiang M, Pugh EN, Birnbaumer L, Sterling P et al (2000) The light response of ON bipolar neurons requires G[alpha]o. J Neurosci 20(24):9053–9058

    CAS  PubMed  Google Scholar 

  30. Sandmeyer LS, Breaux CB, Archer S, Grahn BH (2007) Clinical and electroretinographic characteristics of congenital stationary night blindness in the Appaloosa and the association with the leopard complex. Vet Ophthalmol 10(6):368–375

    PubMed  Google Scholar 

  31. Bellone RR, Brooks SA, Sandmeyer L, Murphy BA, Forsyth G, Archer S et al (2008) Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 179(4):1861–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58(7):1515–1520

    CAS  PubMed  Google Scholar 

  33. Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, Kauffman M et al (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19(2):568–576

    CAS  PubMed  Google Scholar 

  34. Oancea E, Wicks N (2011) TRPM1: new trends for an old TRP. In: Islam MS (ed) Transient receptor potential channels. Advances in experimental medicine and biology, vol 704. Springer, Netherlands, pp 135–145

    Google Scholar 

  35. Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29(19):6088–6093

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K et al (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci U S A 107(1):332–337

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM et al (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci U S A 106(45):19174–19178

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Shen Y, Rampino MAF, Carroll RC, Nawy S (2012) G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc Natl Acad Sci U S A 109(22):8752–8757

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317(6037):536–538

    CAS  PubMed  Google Scholar 

  40. Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317(6037):538–540

    CAS  PubMed  Google Scholar 

  41. Wickman KD, Iniguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME et al (1994) Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 368(6468):255–257

    CAS  PubMed  Google Scholar 

  42. Holz GGt, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319(6055):670–672

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Scott RH, Dolphin AC (1986) Regulation of calcium currents by a GTP analogue: potentiation of (-)-baclofen-mediated inhibition. Neurosci Lett. 69(1):59–64

    CAS  PubMed  Google Scholar 

  44. Nawy S (2000) Regulation of the ON bipolar cell mGluR6 pathway by Ca2+. J Neurosci 20(12):4471–4479

    CAS  PubMed  Google Scholar 

  45. Rampino MAF, Nawy SA (2011) Relief of Mg2 + -dependent inhibition of TRPM1 by PKCα at the rod bipolar cell synapse. J Neurosci 31(38):13596–13603

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2(70):ra21

    PubMed Central  PubMed  Google Scholar 

  47. Koike C, Numata T, Ueda H, Mori Y, Furukawa T (2010) TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium 48(2–3):95–101

    CAS  PubMed  Google Scholar 

  48. Fain GL, Quandt FN, Bastian BL, Gerschenfeld HM (1978) Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272(5652):466–469

    CAS  PubMed  Google Scholar 

  49. Shiells RA, Falk G (1999) Ca(2+)-induced light adaptation in retinal ON-bipolar cells. Keio J Med 48(3):140–146

    CAS  PubMed  Google Scholar 

  50. Berntson A, Smith RG, Taylor WR (2004) Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina. Vis Neurosci 21(6):913–924

    PubMed  Google Scholar 

  51. Nawy S (2004) Desensitization of the mGluR6 transduction current in tiger salamander ON bipolar cells. J Physiol 558(Pt 1):137–146

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kaur T, Nawy S (2012) Characterization of TRPM1 desensitization in ON bipolar cells and its role in downstream signalling. J Physiol 590(1):179–192

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Xu XZS, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98(19):10692–10697

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Roska B, Nemeth E, Werblin FS (1998) Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J Neurosci 18(9):3451–3459

    CAS  PubMed  Google Scholar 

  55. Dong C-J, Werblin FS (1998) Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J Neurophysiol 79(4):2171–2180

    CAS  PubMed  Google Scholar 

  56. Lukasiewicz P, Werblin F (1994) A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J Neurosci 14(3):1213–1223

    CAS  PubMed  Google Scholar 

  57. Zhang J, Slaughter MM (1995) Preferential suppression of the ON pathway by GABAC receptors in the amphibian retina. J Neurophysiol 74(4):1583–1592

    CAS  PubMed  Google Scholar 

  58. Lasansky A (1978) Contacts between receptors and electrophysiologically identified neurones in the retina of the larval tiger salamander. J Physiol 285:531–542

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    CAS  PubMed  Google Scholar 

  60. Nakayama S, Kretsinger RH (1994) Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 23:473–507

    CAS  PubMed  Google Scholar 

  61. Gilli R, Lafitte D, Lopez C, KilhOFFer M, Makarov A, Briand C et al (1998) Thermodynamic analysis of calcium and magnesium binding to calmodulin. Biochemistry 37(16):5450–5456

    CAS  PubMed  Google Scholar 

  62. Levitan IB (1999) It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 22(4):645–648

    CAS  PubMed  Google Scholar 

  63. Shiells RA, Falk G (2000) Activation of Ca2+-calmodulin kinase II induces desensitization by background light in dogfish retinal ‘on’ bipolar cells. J Physiol 528 Pt 2(1):327–338

    CAS  PubMed  Google Scholar 

  64. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100(13):8002–8006

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21(1):14–17

    CAS  PubMed  Google Scholar 

  66. Sessoms-Sikes S, Honse Y, Lovinger DM, Colbran RJ (2005) CaMKIIalpha enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol Cell Neurosci 29(1):139–147

    CAS  PubMed  Google Scholar 

  67. Tong G, Shepherd D, Jahr CE (1995) Synaptic desensitization of NMDA receptors by calcineurin. Science 267(5203):1510–1512

    CAS  PubMed  Google Scholar 

  68. Peterson BZ, DeMaria CD, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22(3):549–558

    CAS  PubMed  Google Scholar 

  69. Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L (1999) Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci U S A 96(5):2435–2438

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48(3):485–498

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Chad JE, Eckert R (1984) Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. Biophys J 45(5):993–999

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Oheim M, KirchhOFF F, Stuhmer W (2006) Calcium microdomains in regulated exocytosis. Cell Calcium 40(5–6):423–439

    CAS  PubMed  Google Scholar 

  73. Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20(3):389–399

    CAS  PubMed  Google Scholar 

  74. Parekh AB (2008) Ca2 + microdomains near plasma membrane Ca2 + channels: impact on cell function. J Physiol 586(13):3043–3054

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Llinas R, Sugimori M, Silver RB (1995) Time resolved calcium microdomains and synaptic transmission. J Physiol Paris 89(2):77–81

    CAS  PubMed  Google Scholar 

  76. Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24(5–6):345–357

    CAS  PubMed  Google Scholar 

  77. Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367(1):117–141

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Snellman J, Nawy S (2002) Regulation of the retinal bipolar cell mGluR6 pathway by calcineurin. J Neurophysiol 88(3):1088–1096

    CAS  PubMed  Google Scholar 

  79. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280(14):13424–13432

    CAS  PubMed  Google Scholar 

  80. Shiells RA, Falk G (1990) Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. ProcBiol Sci 242(1304):91–94

    CAS  Google Scholar 

  81. Wassle H, Grunert U, Cook NJ, Molday RS (1992) The cGMP-gated channel of rod outer segments is not localized in bipolar cells of the mammalian retina. Neurosci Lett 134(2):199–202

    CAS  PubMed  Google Scholar 

  82. Snellman J, Nawy S (2004) cGMP-dependent kinase regulates response sensitivity of the mouse on bipolar cell. J Neurosci 24(29):6621–6628

    CAS  PubMed Central  PubMed  Google Scholar 

  83. de la Villa P, Kurahashi T, Kaneko A (1995) L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. J Neurosci 15(5 Pt 1):3571–3582

    Google Scholar 

  84. Shiells RA, Falk G (2002) Potentiation of ‘on’ bipolar cell flash responses by dim background light and cGMP in dogfish retinal slices. J Physiol 542(Pt 1):211–220

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20(3):351–384

    CAS  PubMed  Google Scholar 

  86. Singer JH, Lassova L, Vardi N, Diamond JS (2004) Coordinated multivesicular release at a mammalian ribbon synapse. Nat Neurosci 7(8):826–833

    CAS  PubMed  Google Scholar 

  87. Singer JH, Diamond JS (2003) Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J Neurosci 23(34):10923–10933

    CAS  PubMed  Google Scholar 

  88. Sampath AP, Rieke F (2004) Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41(3):431–443

    CAS  PubMed  Google Scholar 

  89. Field GD, Rieke F (2002) Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34(5):773–785

    CAS  PubMed  Google Scholar 

  90. Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26(15):3959–3970

    CAS  PubMed  Google Scholar 

  91. Snellman J, Zenisek D, Nawy S (2009) Switching between transient and sustained signalling at the rod bipolar-AII amacrine cell synapse of the mouse retina. J Physiol 587(11):2443–2455

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Vielma AH, Retamal MA, Schmachtenberg O (2012) Nitric oxide signaling in the retina: what have we learned in two decades? Brain Res 1430:112–125

    CAS  PubMed  Google Scholar 

  93. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 88(17):7797–7801

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ahmad I, Barnstable CJ (1993) Differential laminar expression of particulate and soluble guanylate cyclase genes in rat retina. Exp Eye Res 56(1):51–62

    CAS  PubMed  Google Scholar 

  95. Haberecht MF, Schmidt HH, Mills SL, Massey SC, Nakane M, Redburn-Johnson DA (1998) Localization of nitric oxide synthase, NADPH diaphorase and soluble guanylyl cyclase in adult rabbit retina. Vis Neurosci 15(5):881–890

    CAS  PubMed  Google Scholar 

  96. Spreca A, Giambanco I, Rambotti MG (1999) Ultracytochemical study of guanylate cyclases A and B in light- and dark-adapted retinas. Histochem J 31(7):477–483

    CAS  PubMed  Google Scholar 

  97. Koistinaho J, Swanson RA, de Vente J, Sagar SM (1993) NADPH-diaphorase (nitric oxide synthase)-reactive amacrine cells of rabbit retina: putative target cells and stimulation by light. Neuroscience 57(3):587–597

    CAS  PubMed  Google Scholar 

  98. Baldridge WH, Fischer AJ (2001) Nitric oxide donor stimulated increase of cyclic GMP in the goldfish retina. Vis Neurosci 18(6):849–856

    CAS  PubMed  Google Scholar 

  99. Gotzes S, de Vente J, Muller F (1998) Nitric oxide modulates cGMP levels in neurons of the inner and outer retina in opposite ways. Vis Neurosci 15(5):945–955

    CAS  PubMed  Google Scholar 

  100. Eldred WD, Blute TA (2005) Imaging of nitric oxide in the retina. Vis Res 45(28):3469–3486

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Giove TJ, Deshpande MM, Eldred WD (2009) Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res 87(14):3134–3142

    CAS  PubMed  Google Scholar 

  102. Koulen P, Kuhn R, Wassle H, Brandstatter JH (1997) Group I metabotropic glutamate receptors mGluR1alpha and mGluR5a: localization in both synaptic layers of the rat retina. J Neurosci 17(6):2200–2211

    CAS  PubMed  Google Scholar 

  103. Greferath U, Grunert U, Wassle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301(3):433–442

    CAS  PubMed  Google Scholar 

  104. Ruether K, Feigenspan A, Pirngruber J, Leitges M, Baehr W, Strauss O (2010) PKCα is essential for the proper activation and termination of rod bipolar cell response. Invest Ophthalmol Vis Sci 51(11):6051–6058

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by funding from the NEI (EY010254) and by an unrestricted grant from the RPB foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Nawy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nawy, S. (2014). Modulation of TRPM1 and the mGluR6 Cascade in ON Bipolar Cells. In: Martemyanov, K., Sampath, A. (eds) G Protein Signaling Mechanisms in the Retina. Springer Series in Vision Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1218-6_7

Download citation

Publish with us

Policies and ethics