Skip to main content

Reward, Reinforcement, and Impulsivity in Obesity

  • Chapter
  • First Online:
Treatment of the Obese Patient

Abstract

Individual differences on reward sensitivity and impulsivity are associated with the risk of obesity, and unhealthy diets and adiposity can ultimately impair reward processing and cognitive control. Here I review findings from personality, neuropsychological and neuroimaging measures of reward processing and impulse control in pediatric and adult populations with excess weight. Personality measures reflect general dispositional traits of these populations, including sensitivity to reward and punishment, and cognitive and emotional facets of impulsivity. Neuropsychological measures assess the current function of specific cognitive processes relevant to reward and impulse control, including attention/motivation toward food vs. non-food stimuli, response (dis)inhibition and decision-making (e.g. preference for immediate rewards or disregard of potential outcomes). Neuroimaging measures are utilized to unveil the neural underpinnings of these traits and processes. Findings suggest that both young and adult populations with obesity are characterized by dispositionally lower sensitivity to reward (reward deficiency), coupled with higher responsivity to food rewards, poorer response inhibition and steeper discounting of delayed rewards, all of which are longitudinally associated with weight gain. These deficits are manifested in somatosensory (insula/frontal operculum), reward seeking (striatum, extended amygdala, cerebellum), stimulus-oriented attention (dorsolateral prefrontal cortex), and decision-making (orbitofrontal cortex) brain systems dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body Mass Index

SR:

Sensitivity to reward

SP:

Sensitivity to punishment

GNG:

Go/No-Go

IGT:

Iowa Gambling Task

BOLD:

Blood-Oxygen-Level-Dependent Signal

dlPFC:

Dorsolateral prefrontal cortex

mPFC:

Medial prefrontal cortex

ACC:

Anterior cingulate cortex

Hippocamp.:

Hippocampus

Operc.:

Operculum

NS:

Nonsignificant

References

  1. Zheng H, Berthoud HR. Eating for pleasure or calories. Curr Opin Pharmacol. 2007;7(6):607–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26(19):5160–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron. 2011;69(4): 664–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev. 2013; 37(9):2047–58.

    Article  PubMed  Google Scholar 

  5. Horvath TL. The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci. 2005;8(5):561–5.

    Article  CAS  PubMed  Google Scholar 

  6. Rangel A. Regulation of dietary choice by the decision-making circuitry. Nat Neurosci. 2013;16:1717–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci. 2004;7(8):887–93.

    Article  CAS  PubMed  Google Scholar 

  8. Craig AD. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1): 59–70.

    Article  CAS  PubMed  Google Scholar 

  9. Preuschoff K, Quartz SR, Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J Neurosci. 2008;28(11):2745–52.

    Article  CAS  PubMed  Google Scholar 

  10. Wager TD, Sylvester CY, Lacey SC, Nee DE, Franklin M, Jonides J. Common and unique components of response inhibition revealed by fMRI. NeuroImage. 2005;27(2):323–40.

    Article  PubMed  Google Scholar 

  11. Burger KS, Stice E. Variability in reward responsivity and obesity: evidence from brain imaging studies. Curr Drug Abuse Rev. 2011;4(3):182–9.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Davis C. Psychobiological traits in the risk profile for overeating and weight gain. Int J Obes (Lond). 2009;33 Suppl 2:S49–53.

    Article  Google Scholar 

  13. Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341(6147):800–2.

    Article  CAS  PubMed  Google Scholar 

  14. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8.

    Article  CAS  PubMed  Google Scholar 

  16. Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol Psychiatry. 2013;73(9):804–10.

    Article  PubMed  Google Scholar 

  17. Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry. 2013;73(9):811–8.

    Article  PubMed  Google Scholar 

  18. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13(4):279–86.

    CAS  PubMed  Google Scholar 

  19. Ziauddeen H, Fletcher PC. Is food addiction a valid and useful concept? Obes Rev. 2013;14(1):19–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Balodis IM, Kober H, Worhunsky PD, White MA, Stevens MC, Pearlson GD, et al. Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry. 2013;73(9):877–86.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stice E, Yokum S, Burger KS. Elevated reward region responsivity predicts future substance use onset but not overweight/obesity onset. Biol Psychiatry. 2013;73(9):869–76.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Vainik U, Dagher A, Dube L, Fellows LK. Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci Biobehav Rev. 2013;37(3):279–99.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Delgado-Rico E, Rio-Valle JS, Albein-Urios N, Caracuel A, Gonzalez-Jimenez E, Piqueras MJ, et al. Effects of a multicomponent behavioral intervention on impulsivity and cognitive deficits in adolescents with excess weight. Behav Pharmacol. 2012;23(5–6): 609–15.

    Article  PubMed  Google Scholar 

  24. Thamotharan S, Lange K, Zale EL, Huffhines L, Fields S. The role of impulsivity in pediatric obesity and weight status: a meta-analytic review. Clin Psychol Rev. 2013;33(2):253–62.

    Article  PubMed  Google Scholar 

  25. Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Haring HU, et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. 2012;33(5):1052–61.

    Article  PubMed  Google Scholar 

  26. Christakou A, Brammer M, Rubia K. Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting. NeuroImage. 2011;54(2):1344–54.

    Article  PubMed  Google Scholar 

  27. Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. NeuroImage. 2006;31(4):1419–25.

    Article  PubMed  Google Scholar 

  28. Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. NeuroImage. 2010;53(4):1197–207.

    Article  PubMed  Google Scholar 

  29. Moreno-Lopez L, Soriano-Mas C, Delgado-Rico E, Rio-Valle JS, Verdejo-Garcia A. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight. PloS One. 2012;7(11):e49185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ballard K, Knutson B. Dissociable neural representations of future reward magnitude and delay during temporal discounting. NeuroImage. 2009;45(1):143–50.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gray JR, Burgess GC. Personality differences in cognitive control? BAS, processing efficiency, and the prefrontal cortex. J Res Pers. 2004;38(1):35–6.

    Article  Google Scholar 

  33. Torrubia R, Avila C, Molto J, Caseras X. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers Indiv Differ. 2001;31(6):837–62.

    Article  Google Scholar 

  34. Costa PT, Mccrae RR. Domains and facets - hierarchical personality-assessment using the revised neo personality-inventory. J Pers Assess. 1995;64(1): 21–50.

    Article  PubMed  Google Scholar 

  35. Whiteside SP, Lynam DR. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. Pers Indiv Differ. 2001;30(4):669–89.

    Article  Google Scholar 

  36. Cyders MA, Smith GT, Spillane NS, Fischer S, Annus AM. Development and validation of a measure of positive urgency and its relation to drinking behaviors. Alcohol Clin Exp Res. 2005;29(5):153.

    Google Scholar 

  37. Verdejo-Garcia A, Lawrence AJ, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev. 2008;32(4):777–810.

    Article  PubMed  Google Scholar 

  38. Hommer DW, Bjork JM, Gilman JM. Imaging brain response to reward in addictive disorders. Ann NY Acad Sci. 2011;1216:50–61.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell DG, Luo Q, Avny SB, Kasprzycki T, Gupta K, Chen G, et al. Adapting to dynamic stimulus-response values: differential contributions of inferior frontal, dorsomedial, and dorsolateral regions of prefrontal cortex to decision making. J Neurosci. 2009;29(35):10827–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):917–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Aron AR, Poldrack RA. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci. 2006;26(9):2424–33.

    Article  CAS  PubMed  Google Scholar 

  42. Simmonds DJ, Pekar JJ, Mostofsky SH. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia. 2008;46(1):224–32.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bickel WK, Marsch LA. Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction. 2001;96(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  44. Reynolds B. A review of delay-discounting research with humans: relations to drug use and gambling. Behav Pharmacol. 2006;17(8):651–67.

    Article  PubMed  Google Scholar 

  45. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123(Pt 11): 2189–202.

    Article  PubMed  Google Scholar 

  46. Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA. Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry. 2003;53(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  47. Kagan J. Reflection–impulsivity: the generality and dynamics of conceptual tempo. J Abnorm Psychol. 1966;71(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  48. Evenden JL. Varieties of impulsivity. Psychopharmacology. 1999;146(4):348–61.

    Article  CAS  PubMed  Google Scholar 

  49. Sellitto M, Ciaramelli E, di Pellegrino G. Myopic discounting of future rewards after medial orbitofrontal damage in humans. J Neurosci. 2010;30(49):16429–36.

    Article  CAS  PubMed  Google Scholar 

  50. van den Berg L, Pieterse K, Malik JA, Luman M, Willems van Dijk K, Oosterlaan J, et al. Association between impulsivity, reward responsiveness and body mass index in children. Int J Obes (Lond). 2011;35(10):1301–7.

    Article  Google Scholar 

  51. Delgado-Rico E, Rio-Valle JS, Gonzalez-Jimenez E, Campoy C, Verdejo-Garcia A. BMI predicts emotion-driven impulsivity and cognitive inflexibility in adolescents with excess weight. Obesity (Silver Spring). 2012;20(8):1604–10.

    Article  Google Scholar 

  52. Verbeken S, Braet C, Lammertyn J, Goossens L, Moens E. How is reward sensitivity related to bodyweight in children? Appetite. 2012;58(2):478–83.

    Article  PubMed  Google Scholar 

  53. Matton A, Goossens L, Braet C, Vervaet M. Punishment and reward sensitivity: are naturally occurring clusters in these traits related to eating and weight problems in adolescents? Eur Eat Disord Rev. 2013;21(3):184–94.

    Article  PubMed  Google Scholar 

  54. Rollins BY, Loken E, Savage JS, Birch LL. Measurement of food reinforcement in preschool children. Associations with food intake, BMI, and reward sensitivity. Appetite. 2014;72:21–7.

    Article  PubMed  Google Scholar 

  55. Hill C, Saxton J, Webber L, Blundell J, Wardle J. The relative reinforcing value of food predicts weight gain in a longitudinal study of 7–10-y-old children. Am J Clin Nutr. 2009;90(2):276–81.

    Article  CAS  PubMed  Google Scholar 

  56. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity (Silver Spring). 2011;19:1775–83.

    Article  Google Scholar 

  58. Davids S, Lauffer H, Thoms K, Jagdhuhn M, Hirschfeld H, Domin M, et al. Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. Int J Obes (Lond). 2010;34(1):94–104.

    Article  CAS  Google Scholar 

  59. Davis C, Fox J. Sensitivity to reward and body mass index (BMI): evidence for a non-linear relationship. Appetite. 2008;50(1):43–9.

    Article  PubMed  Google Scholar 

  60. Mobbs O, Crepin C, Thiery C, Golay A, Van der Linden M. Obesity and the four facets of impulsivity. Patient Educ Couns. 2010;79(3):372–7.

    Article  PubMed  Google Scholar 

  61. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C, et al. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):620–8.

    Article  CAS  PubMed  Google Scholar 

  62. Davis CA, Levitan RD, Reid C, Carter JC, Kaplan AS, Patte KA, et al. Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity (Silver Spring). 2009; 17(6):1220–5.

    CAS  PubMed  Google Scholar 

  63. Hardman CA, Rogers PJ, Timpson NJ, Munafo MR. Lack of association between DRD2 and OPRM1 genotypes and adiposity. Int J Obes (Lond). 2014; 38(5):730–6.

    Article  CAS  Google Scholar 

  64. Epstein LH, Lin H, Carr KA, Fletcher KD. Food reinforcement and obesity. Psychological moderators. Appetite. 2012;58(1):157–62.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Loeber S, Grosshans M, Korucuoglu O, Vollmert C, Vollstadt-Klein S, Schneider S, et al. Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. Int J Obes (Lond). 2012;36(10): 1334–9.

    Article  CAS  Google Scholar 

  66. Castellanos EH, Charboneau E, Dietrich MS, Park S, Bradley BP, Mogg K, et al. Obese adults have visual attention bias for food cue images: evidence for altered reward system function. Int J Obes (Lond). 2009;33(9):1063–73.

    Article  CAS  Google Scholar 

  67. Schag K, Teufel M, Junne F, Preissl H, Hautzinger M, Zipfel S, et al. Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition. PloS One. 2013;8(10):e76542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Filbey FM, Myers US, Dewitt S. Reward circuit function in high BMI individuals with compulsive overeating: similarities with addiction. NeuroImage. 2012;63(4):1800–6.

    Article  PubMed  Google Scholar 

  69. Stoeckel LE, Weller RE, Cook 3rd EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41(2):636–47.

    Article  PubMed  Google Scholar 

  70. Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, et al. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PloS One. 2012;7(2):e31089.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Murdaugh DL, Cox JE, Cook 3rd EW, Weller RE. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. NeuroImage. 2012;59(3):2709–21.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Fields SA, Sabet M, Reynolds B. Dimensions of impulsive behavior in obese, overweight, and healthy-weight adolescents. Appetite. 2013;70:60–6.

    Article  CAS  PubMed  Google Scholar 

  73. Liang J, Matheson BE, Kaye WH, Boutelle KN. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes (Lond). 2014;38(4):494–506.

    Article  CAS  Google Scholar 

  74. Seeyave DM, Coleman S, Appugliese D, Corwyn RF, Bradley RH, Davidson NS, et al. Ability to delay gratification at age 4 years and risk of overweight at age 11 years. Arch Pediatr Adolesc Med. 2009;163(4): 303–8.

    Article  PubMed  Google Scholar 

  75. Maayan L, Hoogendoorn C, Sweat V, Convit A. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity (Silver Spring). 2011;19(7):1382–7.

    Article  PubMed Central  PubMed  Google Scholar 

  76. He Q, Chen C, Dong Q, Xue G, Chen C, Lu ZL, Bechara A. Gray and white matter structures in the midcingulate cortex region contribute to body mass index in Chinese young adults. Brain Struct Funct. 2013 Oct 22. [Epub ahead of print] PubMed PMID: 24146133; PubMed Central PMCID: PMC3995892.

    Google Scholar 

  77. Xu J, Li Y, Lin H, Sinha R, Potenza MN. Body mass index correlates negatively with white matter integrity in the fornix and corpus callosum: a diffusion tensor imaging study. Hum Brain Mapp. 2013;34(5): 1044–52.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Matsuo K, Nicoletti M, Nemoto K, Hatch JP, Peluso MA, Nery FG, et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp. 2009;30(4):1188–95.

    Article  PubMed  Google Scholar 

  79. Moeller FG, Hasan KM, Steinberg JL, Kramer LA, Dougherty DM, Santos RM, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology. 2005;30(3):610–7.

    Article  CAS  PubMed  Google Scholar 

  80. Yokum S, Ng J, Stice E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes (Lond). 2012;36(5):656–64.

    Article  CAS  Google Scholar 

  81. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage. 2010;52(4):1696–703.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Delgado-Rico E, Soriano-Mas C, Verdejo-Roman J, Rio-Valle JS, Verdejo-Garcia A. Decreased insular and increased midbrain activations during decision-making under risk in adolescents with excess weight. Obesity (Silver Spring). 2013;21(8):1662–8.

    Article  Google Scholar 

  83. Fitzpatrick S, Gilbert S, Serpell L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning? Neuropsychol Rev. 2013;23(2):138–56.

    Article  PubMed  Google Scholar 

  84. Voon V, Irvine MA, Derbyshire K, Worbe Y, Lange I, Abbott S, Morein-Zamir S, Dudley R, Caprioli D, Harrison NA, Wood J, Dalley JW, Bullmore ET, Grant JE, Robbins TW. Measuring “waiting” impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol Psychiatry. 2014;75(2):148–55. doi:10.1016/j.biopsych.2013.05.013.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Hendrick OM, Luo X, Zhang S, Li CS. Saliency processing and obesity: a preliminary imaging study of the stop signal task. Obesity (Silver Spring). 2012;20(9):1796–802.

    Article  Google Scholar 

  86. Kishinevsky FI, Cox JE, Murdaugh DL, Stoeckel LE, Cook 3rd EW, Weller RE. fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite. 2012;58(2):582–92.

    Article  PubMed  Google Scholar 

  87. Horstmann A, Busse FP, Mathar D, Muller K, Lepsien J, Schlogl H, et al. Obesity-related differences between women and men in brain structure and goal-directed behavior. Front Hum Neurosci. 2011;5:58.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Verdejo-Garcia Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verdejo-Garcia, A. (2014). Reward, Reinforcement, and Impulsivity in Obesity. In: Kushner, R., Bessesen, D. (eds) Treatment of the Obese Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1203-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1203-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1202-5

  • Online ISBN: 978-1-4939-1203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics