Skip to main content

Nicotinic Receptors as Targets for Novel Analgesics and Anti-inflammatory Drugs

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

Nicotine and nicotinic receptors have been explored for the past three decades as a strategy for pain control. These receptors are widely expressed throughout the central and peripheral nervous system as well as immune cells. Despite encouraging results with many selective α4β2* agonists in animal models of pain, human studies showed a narrow therapeutic window between analgesic efficacy and toxicity is associated with the use of these agonists as analgesics. α4β2 positive allosteric modulators are being developed with the aim to increase the potency or therapeutic window of these agonists. However, several recent developments have potentially opened new windows of opportunity in the use of nicotinic agents for analgesia. Accumulating evidences suggest that α7 agonists and positive allosteric modulators hold a lot of promise in the treatment of chronic inflammatory pain conditions. In addition, recent animal studies suggest the therapeutic potential of ligands acting at other subtypes of nicotinic receptors. The current review will attempt to highlight these recent developments and outline some important findings that demonstrate further potential for the development of nicotinic ligands as novel analgesics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

nAChRs:

Nicotinic acetylcholine receptors

CNS:

Central nervous system

PAM:

Positive allosteric modulator

References

  1. Davis L, Pollock LJ, Stone TT. Visceral pain. Surg Gynecol Obstet. 1932;55:418–26.

    Google Scholar 

  2. Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell LK, Daly JW. Epibatidine: a novel (chloropyridyl) azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J Am Chem Soc. 1992;114(9):3475–8.

    CAS  Google Scholar 

  3. Bannon AW, Decker MW, Holladay MW, Curzon P, Donnelly-Roberts D, Puttfarcken PS, et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science. 1998;279(5347):77–81.

    CAS  PubMed  Google Scholar 

  4. Khan I, Osaka H, Stanislaus S, Calvo RM, Deerinck T, Yaksh TL, et al. Nicotinic acetylcholine receptor distribution in relation to spinal neurotransmission pathways. J Comp Neurol. 2003;467(1):44–59.

    CAS  PubMed  Google Scholar 

  5. Cordero-Erausquin M, Pons S, Faure P, Changeux JP. Nicotine differentially activates inhibitory and excitatory neurons in the dorsal spinal cord. Pain. 2004;109(3):308–18.

    CAS  PubMed  Google Scholar 

  6. Genzen JR, McGehee DS. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res. 2005;1031(2):229–37.

    CAS  PubMed  Google Scholar 

  7. Mattila MJ, Ahtee L, Saarnivaara L. The analgesic and sedative effects of nicotine in white mice, rabbits and golden hamsters. Ann Med Exp Biol Fenn. 1968;46(1):78–84.

    CAS  PubMed  Google Scholar 

  8. Plenge P, Mellerup ET, Wörtwein G. Characterization of epibatidine binding to medial habenula: potential role in analgesia. J Pharmacol Exp Ther. 2002;302(2):759–65.

    CAS  PubMed  Google Scholar 

  9. Turner JR, Kellar KJ. Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes. J Neurosci. 2005;25(40):9258–65.

    CAS  PubMed  Google Scholar 

  10. Iwamoto ET, Marion L. Adrenergic, serotonergic and cholinergic components of nicotinic antinociception in rats. J Pharmacol Exp Ther. 1993;265(2):777–89.

    CAS  PubMed  Google Scholar 

  11. Iwamoto ET. Characterization of the antinociception induced by nicotine in the pedunculopontine tegmental nucleus and the nucleus raphe magnus. J Pharmacol Exp Ther. 1991;257(1):120–33.

    CAS  PubMed  Google Scholar 

  12. Iwamoto ET. Antinociception after nicotine administration into the mesopontine tegmentum of rats: evidence for muscarinic actions. J Pharmacol Exp Ther. 1989;251(2):412–21.

    CAS  PubMed  Google Scholar 

  13. Aceto MD, Bagley RS, Dewey WL, Fu TC, Martin BR. The spinal cord as a major site for the antinociceptive action of nicotine in the rat. Neuropharmacology. 1986;25(9):1031–6.

    CAS  PubMed  Google Scholar 

  14. Christensen MK, Smith DF. Antinociceptive effects of the stereoisomers of nicotine given intrathecally in spinal rats. J Neural Transm Gen Sect. 1990;80(3):189–94.

    CAS  PubMed  Google Scholar 

  15. Khan IM, Yaksh TL, Taylor P. Epibatidine binding sites and activity in the spinal cord. Brain Res. 1997;753(2):269–82.

    CAS  PubMed  Google Scholar 

  16. Damaj MI, Fei-Yin M, Dukat M, Glassco W, Glennon RA, Martin BR. Antinociceptive responses to nicotinic acetylcholine receptor ligands after systemic and intrathecal administration in mice. J Pharmacol Exp Ther. 1998;284(3):1058–65.

    CAS  PubMed  Google Scholar 

  17. Bitner RS, Nikkel AL, Curzon P, Arneric SP, Bannon AW, Decker MW. Role of the nucleus raphe magnus in antinociception produced by ABT-594: immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. J Neurosci. 1998;18(14):5426–32.

    CAS  PubMed  Google Scholar 

  18. Cucchiaro G, Commons KG. Alpha 4 nicotinic acetylcholine receptor subunit links cholinergic to brainstem monoaminergic neurotransmission. Synapse. 2003;49(3):195–205.

    CAS  PubMed  Google Scholar 

  19. Cucchiaro G, Chaijale N, Commons KG. The dorsal raphe nucleus as a site of action of the antinociceptive and behavioral effects of the alpha4 nicotinic receptor agonist epibatidine. J Pharmacol Exp Ther. 2005;313(1):389–94.

    CAS  PubMed  Google Scholar 

  20. Galindo-Charles L, Hernandez-Lopez S, Galarraga E, Tapia D, Bargas J, Garduño J, et al. Serotoninergic dorsal raphe neurons possess functional postsynaptic nicotinic acetylcholine receptors. Synapse. 2008;62(8):601–15.

    CAS  PubMed  Google Scholar 

  21. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482–91.

    CAS  PubMed  Google Scholar 

  22. Léna C, de Kerchove D’Exaerde A, Cordero-Erausquin M, Le Novère N, del Mar Arroyo-Jimenez M, Changeux JP. Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc Natl Acad Sci U S A. 1999;96(21):12126–31.

    PubMed Central  PubMed  Google Scholar 

  23. Nakamura M, Jang IS. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons. Eur J Pharmacol. 2010;640(1–3): 178–84.

    CAS  PubMed  Google Scholar 

  24. Cordero-Erausquin M, Changeux JP. Tonic nicotinic modulation of serotoninergic transmission in the spinal cord. Proc Natl Acad Sci U S A. 2001;98(5):2803–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Léna C, Le Novère N, de Kerchove d’Exaerde A, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature. 1999;398(6730):805–10.

    CAS  PubMed  Google Scholar 

  26. Damaj MI, Fonck C, Marks MJ, Deshpande P, Labarca C, Lester HA, et al. Genetic approaches identify differential roles for alpha4beta2* nicotinic receptors in acute models of antinociception in mice. J Pharmacol Exp Ther. 2007;321(3):1161–9.

    CAS  PubMed  Google Scholar 

  27. Nirogi R, Goura V, Abraham R, Jayarajan P. α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol. 2013;712(1–3):22–9.

    CAS  PubMed  Google Scholar 

  28. Cucchiaro G, Xiao Y, Gonzalez-Sulser A, Kellar KJ. Analgesic effects of Sazetidine-A, a new nicotinic cholinergic drug. Anesthesiology. 2008;109(3):512–9.

    CAS  PubMed  Google Scholar 

  29. AlSharari SD, Carroll FI, McIntosh JM, Damaj MI. The antinociceptive effects of nicotinic partial agonists varenicline and sazetidine-A in murine acute and tonic pain models. J Pharmacol Exp Ther. 2012;342(3):742–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Donnelly-Roberts DL, Puttfarcken PS, Kuntzweiler TA, Briggs CA, Anderson DJ, Campbell JE, et al. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine]: a novel, orally effective analgesic acting via neuronal nicotinic acetylcholine receptors: I. In vitro characterization. J Pharmacol Exp Ther. 1998;285(2):777–86.

    CAS  PubMed  Google Scholar 

  31. Rode F, Munro G, Holst D, Nielsen EØ, Troelsen KB, Timmermann DB, Rønn LC, Grunnet M. Positive allosteric modulation of α4β2 nAChR agonist induced behaviour. Brain Res. 2012;1458:67–75.

    CAS  PubMed  Google Scholar 

  32. Nirogi R, Jabaris SL, Jayarajan P, Abraham R, Shanmuganathan D, Rasheed MA, et al. Antinociceptive activity of α4β2* neuronal nicotinic receptor agonist A-366833 in experimental models of neuropathic and inflammatory pain. Eur J Pharmacol. 2011;668(1–2):155–62.

    CAS  PubMed  Google Scholar 

  33. Ji J, Bunnelle WH, Anderson DJ, Faltynek C, Dyhring T, Ahring PK, et al. A-366833: a novel nicotinonitrile-substituted 3,6-diazabicyclo[3.2.0]-heptane alpha4beta2 nicotinic acetylcholine receptor selective agonist: synthesis, analgesic efficacy and tolerability profile in animal models. Biochem Pharmacol. 2007;74(8):1253–62.

    CAS  PubMed  Google Scholar 

  34. Rueter LE, Kohlhaas KL, Curzon P, Surowy CS, Meyer MD. Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain. Pain. 2003;103(3): 269–76.

    CAS  PubMed  Google Scholar 

  35. Damaj MI, Glassco W, Aceto MD, Martin BR. Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist. J Pharmacol Exp Ther. 1999;291(1):390–8.

    CAS  PubMed  Google Scholar 

  36. Zhang J, Xiao YD, Jordan KG, Hammond PS, Van Dyke KM, Mazurov AA, et al. Analgesic effects mediated by neuronal nicotinic acetylcholine receptor agonists: correlation with desensitization of α4β2* receptors. Eur J Pharm Sci. 2012;47(5):813–23.

    CAS  PubMed  Google Scholar 

  37. Gao B, Hierl M, Clarkin K, Juan T, Nguyen H, Valk MV, et al. Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain. Pain. 2010;149(1):33–49.

    CAS  PubMed  Google Scholar 

  38. Zwart R, Carbone AL, Moroni M, Bermudez I, Mogg AJ, Folly EA, et al. Sazetidine-A is a potent and selective agonist at native and recombinant alpha4 beta2 nicotinic acetylcholine receptors. Mol Pharmacol. 2008;73(6):1838–43.

    CAS  PubMed  Google Scholar 

  39. Cheng LZ, Han L, Fan J, Huang LT, Peng LC, Wang Y. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559. Mol Pain. 2011;7:56.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Decker MW, Meyer MD, Sullivan JP. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control. Expert Opin Investig Drugs. 2001;10(10):1819–30.

    CAS  PubMed  Google Scholar 

  41. Lee CH, Zhu C, Malysz J, Campbell T, Shaughnessy T, Honore P, et al. α4β2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of α4β2 nAChR agonists in pain. Biochem Pharmacol. 2011;82(8):959–66.

    CAS  PubMed  Google Scholar 

  42. Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, et al. Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther. 2010;334(1):137–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Vincler MA, Eisenach JC. Knock down of the alpha 5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia. Pharmacol Biochem Behav. 2005;80(1):135–43.

    CAS  PubMed  Google Scholar 

  44. Zhu CZ, Chin CL, Rustay NR, Zhong C, Mikusa J, Chandran P, et al. Potentiation of analgesic efficacy but not side effects: co-administration of an α4β2 neuronal nicotinic acetylcholine receptor agonist and its positive allosteric modulator in experimental models of pain in rats. Biochem Pharmacol. 2011;82(8):967–76.

    CAS  PubMed  Google Scholar 

  45. Munro G, Dyhr H, Grunnet M. Selective potentiation of gabapentin-mediated antinociception in the rat formalin test by the nicotinic acetylcholine receptor agonist ABT-594. Neuropharmacology. 2010;59(3):208–17.

    CAS  PubMed  Google Scholar 

  46. Boyce S, Webb JK, Shepheard SL, Russell MG, Hill RG, Rupniak NM. Analgesic and toxic effects of ABT-594 resemble epibatidine and nicotine in rats. Pain. 2000;85(3):443–50.

    CAS  PubMed  Google Scholar 

  47. Joshi SK, Mikusa JP, Weaver B, Honore P. Morphine and ABT-594 (a nicotinic acetylcholine agonist) exert centrally mediated antinociception in the rat cyclophosphamide cystitis model of visceral pain. J Pain. 2008;9(2):146–56.

    CAS  PubMed  Google Scholar 

  48. Lynch III JJ, Wade CL, Mikusa JP, Decker MW, Honore P. ABT-594 (a nicotinic acetylcholine agonist): anti-allodynia in a rat chemotherapy-induced pain model. Eur J Pharmacol. 2005;509(1):43–8.

    CAS  PubMed  Google Scholar 

  49. Kesingland AC, Gentry CT, Panesar MS, Bowes MA, Vernier JM, Cube R, Walker K, Urban L. Analgesic profile of the nicotinic acetylcholine receptor agonists, (+)-epibatidine and ABT-594 in models of persistent inflammatory and neuropathic pain. Pain. 2000; 86(1–2):113–8.

    CAS  PubMed  Google Scholar 

  50. Dutta S, Hosmane BS, Awni WM. Population analyses of efficacy and safety of ABT-594 in subjects with diabetic peripheral neuropathic pain. AAPS J. 2012;14(2):168–75.

    PubMed Central  PubMed  Google Scholar 

  51. Rowbotham MC, Duan WR, Thomas J, Nothaft W, Backonja MM. A randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of ABT-594 in patients with diabetic peripheral neuropathic pain. Pain. 2009;146(3):245–52.

    CAS  PubMed  Google Scholar 

  52. Rowbotham MC, Arslanian A, Nothaft W, Duan WR, Best AE, Pritchett Y, et al. Efficacy and safety of the α4β2 neuronal nicotinic receptor agonist ABT-894 in patients with diabetic peripheral neuropathic pain. Pain. 2012;153(4):862–8.

    CAS  PubMed  Google Scholar 

  53. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54.

    CAS  PubMed  Google Scholar 

  54. Grupe M, Jensen AA, Ahring PK, Christensen JK, Grunnet M. Unravelling the mechanism of action of NS9283, a positive allosteric modulator of (α4)3(β2)2 nicotinic ACh receptors. Br J Pharmacol. 2013;168(8):2000–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Decker MW, Bannon AW, Buckley MJ, Kim DJ, Holladay MW, Ryther KB, et al. Antinociceptive effects of the novel neuronal nicotinic acetylcholine receptor agonist, ABT-594, in mice. Eur J Pharmacol. 1998;346(1):23–33.

    CAS  PubMed  Google Scholar 

  56. Rashid MH, Furue H, Yoshimura M, Ueda H. Tonic inhibitory role of alpha4beta2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice. Pain. 2006;125(1–2):125–35.

    CAS  PubMed  Google Scholar 

  57. Rueter LE, Donnelly-Roberts DL, Curzon P, Briggs CA, Anderson DJ, Bitner RS. A-85380: a pharmacological probe for the preclinical and clinical investigation of the alphabeta neuronal nicotinic acetylcholine receptor. CNS Drug Rev. 2006;12(2):100–12.

    CAS  PubMed  Google Scholar 

  58. Curzon P, Nikkel AL, Bannon AW, Arneric SP, Decker MW. Differences between the antinociceptive effects of the cholinergic channel activators A-85380 and (+/−)-epibatidine in rats. J Pharmacol Exp Ther. 1998;287(3):847–53.

    CAS  PubMed  Google Scholar 

  59. Sharma G, Vijayaraghavan S. Nicotinic receptors containing the alpha7 subunit: a model for rational drug design. Curr Med Chem. 2008;15(28):2921–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F, et al. The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology. 2009;56(1):254–63.

    CAS  PubMed  Google Scholar 

  61. Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther. 2009;122:302–11.

    CAS  PubMed  Google Scholar 

  62. Pedigo NW, Dewey WL, Harris LS. Determination and characterization of the antinociceptive activity of intraventricularly administered acetylcholine in mice. J Pharmacol Exp Ther. 1975;193(3):845–52.

    CAS  PubMed  Google Scholar 

  63. Damaj MI, Meyer EM, Martin BR. The antinociceptive effects of alpha7 nicotinic agonists in an acute pain model. Neuropharmacology. 2000;39(13):2785–91.

    CAS  PubMed  Google Scholar 

  64. Wang Y, Su DM, Wang RH, Liu Y, Wang H. Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience. 2005;132(1):49–56.

    CAS  PubMed  Google Scholar 

  65. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921): 384–8.

    CAS  PubMed  Google Scholar 

  66. Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci. 2004;61(18):2322–31.

    CAS  PubMed  Google Scholar 

  67. Hunt S, Schmidt J. Some observations on the binding patterns of alpha-bungarotoxin in the central nervous system of the rat. Brain Res. 1978;157(2):213–32.

    CAS  PubMed  Google Scholar 

  68. Gillberg PG, Aquilonius SM. Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography. Changes in amyotrophic lateral sclerosis. Acta Neurol Scand. 1985;72(3):299–306.

    CAS  PubMed  Google Scholar 

  69. Gillberg PG, Wiksten B. Effects of spinal cord lesions and rhizotomies on cholinergic and opiate receptor binding sites in rat spinal cord. Acta Physiol Scand. 1986;126(4):575–82.

    CAS  PubMed  Google Scholar 

  70. Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19(6):493–9.

    CAS  PubMed  Google Scholar 

  71. de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol. 2007;151(7):915–29.

    PubMed Central  PubMed  Google Scholar 

  72. Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci. 2011;68(6):931–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Czura CJ, Friedman SG, Tracey KJ. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J Endotoxin Res. 2003;9(6):409–13.

    CAS  PubMed  Google Scholar 

  74. Medhurst SJ, Hatcher JP, Hille CJ, Bingham S, Clayton NM, Billinton A, et al. Activation of the alpha7-nicotinic acetylcholine receptor reverses complete Freund adjuvant-induced mechanical hyperalgesia in the rat via a central site of action. J Pain. 2008;9(7):580–7.

    CAS  PubMed  Google Scholar 

  75. van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60(1):114–22.

    PubMed  Google Scholar 

  76. Gurun MS, Parker R, Eisenach JC, Vincler M. The effect of peripherally administered CDP-choline in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth Analg. 2009;108(5):1680–7.

    CAS  PubMed  Google Scholar 

  77. Bagdas D, Sonat FA, Hamurtekin E, Sonal S, Gurun MS. The antihyperalgesic effect of cytidine-5′-diphosphate-choline in neuropathic and inflammatory pain models. Behav Pharmacol. 2011;22(5–6):589–98.

    CAS  PubMed  Google Scholar 

  78. Marrero MB, Bencherif M, Lippiello PM, Lucas R. Application of alpha7 nicotinic acetylcholine receptor agonists in inflammatory diseases: an overview. Pharm Res. 2011;28(2):413–6.

    CAS  PubMed  Google Scholar 

  79. Munro G, Hansen R, Erichsen H, Timmermann D, Christensen J, Hansen H. The α7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat. Br J Pharmacol. 2012;167(2):421–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Freitas K, Ghosh S, Ivy Carroll F, Lichtman AH, Imad Damaj M. Effects of alpha 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology. 2013;65:156–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Loram LC, Taylor FR, Strand KA, Maier SF, Speake JD, Jordan KG, et al. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male Sprague Dawley rats. J Pain. 2012;13(12):1162–71.

    CAS  PubMed  Google Scholar 

  82. Pacini A, Di Cesare Mannelli L, Bonaccini L, Ronzoni S, Bartolini A, Ghelardini C. Protective effect of alpha7 nAChR: behavioural and morphological features on neuropathy. Pain. 2010;150(3):542–9.

    CAS  PubMed  Google Scholar 

  83. Christensen DZ, Mikkelsen JD, Hansen HH, Thomsen MS. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain. J Neurochem. 2010;114(4):1205–16.

    CAS  PubMed  Google Scholar 

  84. Freitas K, Carroll FI, Damaj MI. The antinociceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther. 2013;344(1):264–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Freitas K, Negus S, Carroll F, Damaj M. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model. Br J Pharmacol. 2013;169(3):567–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Peng C, Kimbrell MR, Tian C, Pack TF, Crooks PA, Fifer EK, et al. Multiple modes of α7 nAChR non-competitive antagonism of control agonist-evoked and allosterically enhanced currents. Mol Pharmacol. 2013;84(3):459–75 doi:10.1124/mol.113.086462.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM. Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A. 2006;103(47):17880–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Satkunanathan N, Livett B, Gayler K, Sandall D, Down J, Khalil Z. Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res. 2005;1059(2):149–58.

    CAS  PubMed  Google Scholar 

  89. Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ. Are alpha9alpha10 nicotinic acetylcholine receptors a pain target for alpha-conotoxins? Mol Pharmacol. 2007;72(6):1406–10.

    CAS  PubMed  Google Scholar 

  90. McIntosh JM, Absalom N, Chebib M, Elgoyhen AB, Vincler M. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol. 2009;78(7):693–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zheng G, Zhang Z, Dowell C, Wala E, Dwoskin LP, Holtman JR, et al. Discovery of non-peptide, small molecule antagonists of α9α10 nicotinic acetylcholine receptors as novel analgesics for the treatment of neuropathic and tonic inflammatory pain. Bioorg Med Chem Lett. 2011;21(8):2476–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Wala EP, Crooks PA, McIntosh JM, Holtman Jr JR. Novel small molecule α9α10 nicotinic receptor antagonist prevents and reverses chemotherapy-evoked neuropathic pain in rats. Anesth Analg. 2012;115(3):713–20.

    CAS  PubMed  Google Scholar 

  93. Sahley TL, Berntson GG. Antinociceptive effects of central and systemic administrations of nicotine in the rat. Psychopharmacology (Berl). 1979;65(3):279–83.

    CAS  Google Scholar 

  94. Fertig JB, Pomerleau OF, Sanders B. Nicotine-produced antinociception in minimally deprived smokers and ex-smokers. Addict Behav. 1986;11(3):239–48.

    CAS  PubMed  Google Scholar 

  95. Fukada T, Iwakiri H, Ozaki M. A randomised double-blind crossover trial of the potential analgesic effect of a transdermal nicotine patch in non-smokers based on objective and subjective assessment. Eur J Anaesthesiol. 2011;28(8):592–6.

    CAS  PubMed  Google Scholar 

  96. Flood P, Daniel D. Intranasal nicotine for postoperative pain treatment. Anesthesiology. 2004;101(6):1417–21.

    CAS  PubMed  Google Scholar 

  97. Jankowski CJ, Weingarten TN, Martin DP, Whalen FX, Gebhart JB, Liedl LM, et al. Randomised trial of intranasal nicotine and postoperative pain, nausea and vomiting in non-smoking women. Eur J Anaesthesiol. 2011;28(8):585–91.

    PubMed  Google Scholar 

  98. Habib AS, White WD, El Gasim MA, Saleh G, Polascik TJ, Moul JW, et al. Transdermal nicotine for analgesia after radical retropubic prostatectomy. Anesth Analg. 2008;107(3): 999–1004.

    CAS  PubMed  Google Scholar 

  99. Hong D, Conell-Price J, Cheng S, Flood P. Transdermal nicotine patch for postoperative pain management: a pilot dose-ranging study. Anesth Analg. 2008;107(3):1005–10.

    CAS  PubMed  Google Scholar 

  100. Yagoubian B, Akkara J, Afzali P, Alfi DM, Olson L, Conell-Price J, Yeh J, Eisig SB, Flood P. Nicotine nasal spray as an adjuvant analgesic for third molar surgery. J Oral Maxillofac Surg. 2011;69(5):1316–9.

    PubMed  Google Scholar 

  101. Olson LC, Hong D, Conell-Price JS, Cheng S, Flood P. A transdermal nicotine patch is not effective for postoperative pain management in smokers: a pilot dose-ranging study. Anesth Analg. 2009;109(6):1987–91.

    PubMed  Google Scholar 

  102. Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, et al. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature. 1986;319(6052):368–74.

    CAS  PubMed  Google Scholar 

  103. Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A. 1987;84(21):7763–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Sidhu N, Davies S, Nadarajah A, Rivera J, Whittington R, Mercier RJ, Virag L, Wang S, Flood P. Oral choline supplementation for postoperative pain. Br J Anaesth. 2013;111(2):249–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Hama A, Menzaghi F. Antagonist of nicotinic acetylcholine receptors (nAChR) enhances formalin-induced nociception in rats: tonic role of nAChRs in the control of pain following injury. Brain Res. 2001;888(1):102–6.

    CAS  PubMed  Google Scholar 

  106. Ueda M, Iida Y, Tominaga A, Yoneyama T, Ogawa M, Magata Y, Nishimura H, Kuge Y, Saji H. Nicotinic acetylcholine receptors expressed in the ventral posterolateral thalamic nucleus play an important role in anti-allodynic effects. Br J Pharmacol. 2010;159(6):1201–10.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Participants in this research review are supported by the National Institutes of Health (NIH) and The Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imad Damaj Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Damaj, M.I., Freitas, K., Bagdas, D., Flood, P. (2014). Nicotinic Receptors as Targets for Novel Analgesics and Anti-inflammatory Drugs. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_12

Download citation

Publish with us

Policies and ethics