Skip to main content

The Effects of Nicotine on Learning and Memory

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

Acetylcholine is involved in cognitive processes, and the ability of nicotine to modulate nicotinic acetylcholinergic receptor function contributes to the effects of tobacco on learning and other cognitive processes. The capacity of nicotine to alter learning and cognition may facilitate the development and maintenance of nicotine addiction. Nicotine may enhance the formation of strong but yet maladaptive drug-stimuli associations that can trigger cravings and drug-seeking behavior upon reexposure to the stimuli. In addition, deficits in cognition during periods of abstinence may contribute to smoking relapse. Nicotine may initially alter cell-signaling cascades involved in learning and synaptic plasticity to facilitate cognition, but continued use may lead to compensatory adaptations in nicotinic receptor function, such as receptor desensitization and upregulation that contribute to tolerance and withdrawal deficits in cognition. The effects of nicotine on cognition are influenced by the brain regions involved in the cognitive tasks and by both genetics and developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dale HH, Dudley HW. The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol. 1929;68(2):97–123.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Loewi O. On the antagonism between pressor and depressor agents in the frog’s heart. J Pharmacol Exp Ther. 1949;96(3):295–304.

    CAS  PubMed  Google Scholar 

  3. Fishman MC. Sir Henry Hallett Dale and acetylcholine story. Yale J Biol Med. 1972;45(2):104–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci. 1999;3(9):351–9.

    PubMed  Google Scholar 

  5. Sarter M, Parikh V, Howe WM. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol. 2009;78(7):658–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Fadda F, Cocco S, Stancampiano R. Hippocampal acetylcholine release correlates with spatial learning performance in freely moving rats. Neuroreport. 2000;11(10):2265–9.

    CAS  PubMed  Google Scholar 

  8. Hodges H, Allen Y, Kershaw T, Lantos PL, Gray JA, Sinden J. Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system—I. Amelioration of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain. Neuroscience. 1991;45(3):587–607.

    CAS  PubMed  Google Scholar 

  9. Arendt T, Allen Y, Sinden J, et al. Cholinergic-rich brain transplants reverse alcohol-induced memory deficits. Nature. 1988;332(6163):448–50.

    CAS  PubMed  Google Scholar 

  10. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–80.

    CAS  PubMed  Google Scholar 

  11. Feiro O, Gould TJ. The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice. Pharmacol Biochem Behav. 2005;80(2):251–62.

    CAS  PubMed  Google Scholar 

  12. Gravius A, Barberi C, Schäfer D, Schmidt WJ, Danysz W. The role of group I metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats—a comparison. Neuropharmacology. 2006;51(7–8):1146–55.

    CAS  PubMed  Google Scholar 

  13. Deutsch JA. The cholinergic synapse and the site of memory. Science. 1971;174(4011):788–94.

    CAS  PubMed  Google Scholar 

  14. Mansvelder H, Aerde K, Couey J, Brussaard A. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl). 2006;184(3–4):292–305.

    CAS  Google Scholar 

  15. Orr-Urtreger A, Seldin MF, Baldini A, Beaudet al. Cloning and mapping of the mouse alpha 7-neuronal nicotinic acetylcholine receptor. Genomics. 1995;26(2):399–402.

    CAS  PubMed  Google Scholar 

  16. Orr-Urtreger A, Goldner FM, Saeki M, et al. Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci. 1997;17(23):9165–71.

    CAS  PubMed  Google Scholar 

  17. Wonnacott S. α bungarotoxin binds to low-affinity nicotine binding sites in rat brain. J Neurochem. 1986;47(6):1706–12.

    CAS  PubMed  Google Scholar 

  18. Marks MJ, Collins AC. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol Pharmacol. 1982;22(3):554–64.

    CAS  PubMed  Google Scholar 

  19. Marks MJ, Stitzel JA, Romm E, Wehner JM, Collins AC. Nicotinic binding sites in rat and mouse brain: comparison of acetylcholine, nicotine, and alpha-bungarotoxin. Mol Pharmacol. 1986;30(5):427–36.

    CAS  PubMed  Google Scholar 

  20. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem. 2002;82(3):468–81.

    CAS  PubMed  Google Scholar 

  21. Penfield DW, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–97.

    CAS  PubMed  Google Scholar 

  22. Eichenbaum H. The hippocampus and mechanisms of declarative memory. Behav Brain Res. 1999;103(2):123–33.

    CAS  PubMed  Google Scholar 

  23. Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol. 2001;86(6):3043–55.

    CAS  PubMed  Google Scholar 

  24. McQuiston AR, Madison DV. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci. 1999;19(8):2887–96.

    CAS  PubMed  Google Scholar 

  25. Fu Y, Matta SG, James TJ, Sharp BM. Nicotine-induced norepinephrine release in the rat amygdala and hippocampus is mediated through brainstem nicotinic cholinergic receptors. J Pharmacol Exp Ther. 1998;284(3):1188–96.

    CAS  PubMed  Google Scholar 

  26. Freund RK, Jungschaffer DA, Collins AC, Wehner JM. Evidence for modulation of GABAergic neurotransmission by nicotine. Brain Res. 1988;453(1–2):215–20.

    CAS  PubMed  Google Scholar 

  27. Radcliffe KA, Fisher JL, Gray R, Dani JA. Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Ann N Y Acad Sci. 1999;868:591–610.

    CAS  PubMed  Google Scholar 

  28. Rapier C, Lunt GG, Wonnacott S. Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem. 1990;54(3):937–45.

    CAS  PubMed  Google Scholar 

  29. Grady S, Marks MJ, Wonnacott S, Collins AC. Characterization of nicotinic receptor-mediated [H-3] dopamine release from synaptosomes prepared from mouse striatum. J Neurochem. 1992;59(3):848–56.

    CAS  PubMed  Google Scholar 

  30. Rowell PP, Winkler DL. Nicotinic stimulation of [3H]acetylcholine release from mouse cerebral cortical synaptosomes. J Neurochem. 1984;43(6):1593–8.

    CAS  PubMed  Google Scholar 

  31. Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ. Effects of systemic nicotine on serotonin release in rat brain. Brain Res. 1993;621(2):311–8.

    CAS  PubMed  Google Scholar 

  32. Westfall TC, Grant H, Perry H. Release of dopamine and 5-hydroxytryptamine from rat striatal slices following activation of nicotinic cholinergic receptors. Gen Pharmacol. 1983;14(3):321–5.

    CAS  PubMed  Google Scholar 

  33. Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci. 1999;868:515–25.

    CAS  PubMed  Google Scholar 

  34. Lynch G, Kessler M, Arai A, Larson J. The nature and causes of hippocampal long-term potentiation. Prog Brain Res. 1990;83:233–50.

    CAS  PubMed  Google Scholar 

  35. McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74(8):1120–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Karadsheh MS, Shah MS, Tang X, Macdonald RL, Stitzel JA. Functional characterization of mouse alpha4beta2 nicotinic acetylcholine receptors stably expressed in HEK293T cells. J Neurochem. 2004;91(5):1138–50.

    CAS  PubMed  Google Scholar 

  37. Levin ED, Bettegowda C, Weaver T, Christopher NC. Nicotine-dizocilpine interactions and working and reference memory performance of rats in the radial-arm maze. Pharmacol Biochem Behav. 1998;61(3):335–40.

    CAS  PubMed  Google Scholar 

  38. André JM, Leach PT, Gould TJ. Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus. Neuropharmacology. 2011;60(4):617–25.

    PubMed Central  PubMed  Google Scholar 

  39. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T. Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci. 2000;12(10):3741–7.

    CAS  PubMed  Google Scholar 

  40. He J, Deng CY, Chen RZ, Zhu XN, Yu JP. Long-term potentiation induced by nicotine in CA1 region of hippocampal slice is Ca(2+)-dependent. Acta Pharmacol Sin. 2000;21(5):429–32.

    CAS  PubMed  Google Scholar 

  41. Matsuyama S, Matsumoto A. Epibatidine induces long-term potentiation (LTP) via activation of alpha4beta2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both alpha7 and alpha4beta2 nAChRs essential to nicotinic LTP. J Pharmacol Sci. 2003;93(2):180–7.

    CAS  PubMed  Google Scholar 

  42. Levin ED. Nicotinic receptor subtypes and cognitive function. J Neurobiol. 2002;53(4):633–40.

    CAS  PubMed  Google Scholar 

  43. Kenney JW, Wilkinson DS, Gould TJ. The enhancement of contextual fear conditioning by ABT-418. Behav Pharmacol. 2010;21(3):246–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Gould TJ, Wehner JM. Nicotine enhancement of contextual fear conditioning. Behav Brain Res. 1999;102(1–2):31–9.

    CAS  PubMed  Google Scholar 

  45. Andersen P, Bland BH, Dudar JD. Organization of the hippocampal output. Exp Brain Res. 1973;17(2):152–68.

    CAS  PubMed  Google Scholar 

  46. Bartesaghi R, Migliore M, Gessi T. Input−output relations in the entorhinal cortex−dentate−hippocampal system: evidence for a non-linear transfer of signals. Neuroscience. 2006;142(1):247–65.

    CAS  PubMed  Google Scholar 

  47. Bennett MR, Gibson WG, Robinson J. Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus. Philos Trans R Soc Lond B Biol Sci. 1994;343(1304):167–87.

    CAS  PubMed  Google Scholar 

  48. Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci. 1997;111:104–13.

    CAS  PubMed  Google Scholar 

  49. Kim JJ, Rison RA, Fanselow MS. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci. 1993;107(6):1093–8.

    CAS  PubMed  Google Scholar 

  50. Phillips RG, Ledoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106(2):274–85.

    CAS  PubMed  Google Scholar 

  51. Gilmartin MR, Miyawaki H, Helmstetter FJ, Diba K. Prefrontal activity links nonoverlapping events in memory. J Neurosci. 2013;33(26):10910–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF. Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus. 1998;8(6):638–46.

    CAS  PubMed  Google Scholar 

  53. Gould TJ. Nicotine produces a within subject enhancement of contextual fear conditioning in C57BL/6 mice independent of sex. Integr Physiol Behav Sci. 2003;38:124–32.

    PubMed  Google Scholar 

  54. Gould TJ, Higgins JS. Nicotine enhances contextual fear conditioning in C57BL/6J mice at 1 and 7 days post-training. Neurobiol Learn Mem. 2003;80:147–57.

    CAS  PubMed  Google Scholar 

  55. Gould TJ, Feiro O, Moore D. Nicotine enhancement of trace cued fear conditioning but not delay cued fear conditioning in C57BL/6J mice. Behav Brain Res. 2004;155:167–73.

    CAS  PubMed  Google Scholar 

  56. Davis JA, Porter J, Gould TJ. Nicotine enhances both foreground and background contextual fear conditioning. Neurosci Lett. 2006;394(3):202–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Szyndler J, Sienkiewicz-Jarosz H, Maciejak P, et al. The anxiolytic-like effect of nicotine undergoes rapid tolerance in a model of contextual fear conditioning in rats. Pharmacol Biochem Behav. 2001;69(3–4):511–8.

    CAS  PubMed  Google Scholar 

  58. Tian S, Huang F, Li P, et al. Nicotine enhances contextual fear memory reconsolidation in rats. Neurosci Lett. 2011;487(3):368–71.

    CAS  PubMed  Google Scholar 

  59. Davis JA, Kenney JW, Gould TJ. Hippocampal alpha4beta2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. J Neurosci. 2007;27(40):10870–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kenney JW, Raybuck JD, Gould TJ. Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning. Hippocampus. 2012;22(8):1681–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65(1):7–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Raybuck JD, Gould TJ. The role of nicotinic acetylcholine receptors in the medial prefrontal cortex and hippocampus in trace fear conditioning. Neurobiol Learn Mem. 2010;94(3):353–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Knight DC, Cheng DT, Smith CN, Stein EA, Helmstetter FJ. Neural substrates mediating human delay and trace fear conditioning. J Neurosci. 2004;24(1):218–28.

    CAS  PubMed  Google Scholar 

  64. Runyan JD, Moore AN, Dash PK. A role for prefrontal cortex in memory storage for trace fear conditioning. J Neurosci. 2004;24(6):1288–95.

    CAS  PubMed  Google Scholar 

  65. Harvey SC, Maddox FN, Luetje CW. Multiple determinants of dihydro-beta-erythroidine sensitivity on rat neuronal nicotinic receptor alpha subunits. J Neurochem. 1996;67(5):1953–9.

    CAS  PubMed  Google Scholar 

  66. Turek JW, Kang CH, Campbell JE, Arneric SP, Sullivan JP. A sensitive technique for the detection of the alpha 7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. J Neurosci Methods. 1995;61(1–2):113–8.

    CAS  PubMed  Google Scholar 

  67. Palma E, Bertrand S, Binzoni T, Bertrand D. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Physiol (Lond). 1996;491(Pt 1):151–61.

    CAS  Google Scholar 

  68. Davis JA, Gould TJ. The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl). 2006;184(3–4):345–52.

    CAS  Google Scholar 

  69. Davis J, Gould T. Beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl). 2007;190(3):343–52.

    CAS  Google Scholar 

  70. Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A. Alpha 7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Mem. 1998;5:302–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Wehner JM, Keller JJ, Keller AB, et al. Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning. Neuroscience. 2004;129(1):11–24.

    CAS  PubMed  Google Scholar 

  72. Semenova S, Contet C, Roberts AJ, Markou A. Mice lacking the β4 subunit of the nicotinic acetylcholine receptor show memory deficits, altered anxiety- and depression-like behavior, and diminished nicotine-induced analgesia. Nicotine Tob Res. 2012;14(11):1346–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lotfipour S, Byun JS, Leach P, et al. Targeted deletion of the mouse alpha2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors. J Neurosci. 2013;33(18):7728–41.

    CAS  PubMed  Google Scholar 

  74. Caldarone BJ, Duman CH, Picciotto MR. Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology. 2000;39(13):2779–84.

    CAS  PubMed  Google Scholar 

  75. Portugal GS, Wilkinson DS, Kenney JW, Sullivan C, Gould TJ. Strain-dependent effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Behav Genet. 2012;42(1):133–50.

    PubMed Central  PubMed  Google Scholar 

  76. Portugal GS, Wilkinson DS, Turner JR, Blendy JA, Gould TJ. Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Neurobiol Learn Mem. 2012;97(4):482–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gould TJ, McCarthy MM, Keith RA. MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol. 2002;13(4):287–94.

    CAS  PubMed  Google Scholar 

  78. Kim JJ, DeCola JP, Landeira-Fernandez J, Fanselow MS. N-methyl-d-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav Neurosci. 1991;105(1):126–33.

    CAS  PubMed  Google Scholar 

  79. Gould TJ, Lewis MC. Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning. Learn Mem. 2005;12(4):389–98.

    PubMed Central  PubMed  Google Scholar 

  80. Magnusson KR. Aging of glutamate receptors: correlations between binding and spatial memory performance in mice. Mech Ageing Dev. 1998;104(3):227–48.

    CAS  PubMed  Google Scholar 

  81. Kenney JW, Florian C, Portugal GS, Abel T, Gould TJ. Involvement of hippocampal jun-N terminal kinase pathway in the enhancement of learning and memory by nicotine. Neuropsychopharmacology. 2010;35(2):483–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kenney JW, Poole RL, Adoff MD, Logue SF, Gould TJ. Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One. 2012;7(6):e39939.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127–48.

    CAS  PubMed  Google Scholar 

  84. Bjorkblom B, Ostman N, Hongisto V, et al. Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci. 2005;25(27):6350–61.

    PubMed  Google Scholar 

  85. Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70(4):1061–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15(11):2760–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Davis JA, James JR, Siegel SJ, Gould TJ. Withdrawal from chronic nicotine administration impairs contextual fear conditioning in C57BL/6 mice. J Neurosci. 2005;25:8708–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. André JM, Gulick D, Portugal GS, Gould TJ. Nicotine withdrawal disrupts both foreground and background contextual fear conditioning but not pre-pulse inhibition of the acoustic startle response in C57BL/6 mice. Behav Brain Res. 2008;190(2):174–81.

    PubMed Central  PubMed  Google Scholar 

  89. Portugal GS, Gould TJ. Nicotine withdrawal disrupts new contextual learning. Pharmacol Biochem Behav. 2009;92(1):117–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Raybuck JD, Gould TJ. Nicotine withdrawal-induced deficits in trace fear conditioning in C57BL/6 mice—a role for high-affinity β2 subunit-containing nicotinic acetylcholine receptors. Eur J Neurosci. 2009;29(2):377–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Portugal G, Wilkinson D, Kenney J, Sullivan C, Gould T. Strain-dependent effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. Behav Genet. 2012;42:133–50.

    PubMed Central  PubMed  Google Scholar 

  92. Davis JA, Gould TJ. Hippocampal nAChRs mediate nicotine withdrawal-related learning deficits. Eur Neuropsychopharmacol. 2009;19(8):551–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Portugal GS, Kenney JW, Gould TJ. β2 containing acetylcholine receptors mediate nicotine withdrawal deficits in learning. Neurobiol Learn Mem. 2008;89(2):106–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gentry CL, Lukas RJ. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002;1(4):359–85.

    CAS  PubMed  Google Scholar 

  95. Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther. 1983;226(3):817–25.

    CAS  PubMed  Google Scholar 

  96. Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 1983;220(4593):214–6.

    CAS  PubMed  Google Scholar 

  97. Gould TJ, Portugal GS, Andre JM, et al. The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation. Neuropharmacology. 2012;62(5–6):2118–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Wilkinson DS, Turner JR, Blendy JA, Gould TJ. Genetic background influences the effects of withdrawal from chronic nicotine on learning and high-affinity nicotinic acetylcholine receptor binding in the dorsal and ventral hippocampus. Psychopharmacology (Berl). 2013;225(1):201–8.

    CAS  Google Scholar 

  99. Dani JA, Heinemann S. Molecular and cellular aspects of nicotine abuse. Neuron. 1996;16(5):905–8.

    CAS  PubMed  Google Scholar 

  100. Penton RE, Quick MW, Lester RAJ. Short- and long-lasting consequences of in vivo nicotine treatment on hippocampal excitability. J Neurosci. 2011;31(7):2584–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wilkinson DS, Gould TJ. Withdrawal from chronic nicotine and subsequent sensitivity to nicotine challenge on contextual learning. Behav Brain Res. 2013;250:58–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Raybuck JD, Portugal GS, Lerman C, Gould TJ. Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice. Behav Neurosci. 2008;122(5):1166–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Portugal GS, Gould TJ. Bupropion dose-dependently reverses nicotine withdrawal deficits in contextual fear conditioning. Pharmacol Biochem Behav. 2007;88(2):179–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48(10):3474–7.

    CAS  PubMed  Google Scholar 

  105. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther. 2000;295(1):321–7.

    CAS  PubMed  Google Scholar 

  106. Papke RL, Trocmé-Thibierge C, Guendisch D, Al Rubaiy SAA, Bloom SA. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists. J Pharmacol Exp Ther. 2011;337(2):367–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Oliveira AMM, Hawk JD, Abel T, Havekes R. Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learn Mem. 2010;17(3):155–60.

    PubMed Central  PubMed  Google Scholar 

  108. Barker GRI, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci. 2011;31(29):10721–31.

    CAS  PubMed  Google Scholar 

  109. Kenney JW, Adoff MD, Wilkinson DS, Gould TJ. The effects of acute, chronic, and withdrawal from chronic nicotine on novel and spatial object recognition in male C57BL/6J mice. Psychopharmacology (Berl). 2011;217:353–65.

    CAS  Google Scholar 

  110. Puma C, Deschaux O, Molimard R, Bizot JC. Nicotine improves memory in an object recognition task in rats. Eur Neuropsychopharmacol. 1999;9(4):323–7.

    CAS  PubMed  Google Scholar 

  111. Jacklin DL, Goel A, Clementino KJ, Hall AWM, Talpos JC, Winters BD. Severe cross-modal object recognition deficits in rats treated sub-chronically with NMDA receptor antagonists are reversed by systemic nicotine: implications for abnormal multisensory integration in schizophrenia. Neuropsychopharmacology. 2012;37(10):2322–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Melichercik AM, Elliott KS, Bianchi C, Ernst SM, Winters BD. Nicotinic receptor activation in perirhinal cortex and hippocampus enhances object memory in rats. Neuropharmacology. 2012;62(5–6):2096–105.

    CAS  PubMed  Google Scholar 

  113. Shapiro ML, Eichenbaum H. Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus. 1999;9(4):365–84.

    CAS  PubMed  Google Scholar 

  114. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.

    PubMed  Google Scholar 

  115. Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297(5868):681–3.

    CAS  PubMed  Google Scholar 

  116. Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93(1):74–104.

    CAS  PubMed  Google Scholar 

  117. Azzopardi E, Typlt M, Jenkins B, Schmid S. Sensorimotor gating and spatial learning in α7-nicotinic receptor knockout mice. Genes Brain Behav. 2013;12(4):414–23.

    CAS  PubMed  Google Scholar 

  118. Abdulla FA, Bradbury E, Calaminici MR, et al. Relationship between up-regulation of nicotine binding sites in rat brain and delayed cognitive enhancement observed after chronic or acute nicotinic receptor stimulation. Psychopharmacology (Berl). 1996;124(4):323–31.

    CAS  Google Scholar 

  119. Sharifzadeh M, Tavasoli M, Naghdi N, Ghanbari A, Amini M, Roghani A. Post-training intrahippocampal infusion of nicotine prevents spatial memory retention deficits induced by the cyclo-oxygenase-2-specific inhibitor celecoxib in rats. J Neurochem. 2005;95(4):1078–90.

    CAS  PubMed  Google Scholar 

  120. Attaway CM, Compton DM, Turner MD. The effects of nicotine on learning and memory: a neuropsychological assessment in young and senescent fischer 344 rats. Physiol Behav. 1999;67(3):421–31.

    CAS  PubMed  Google Scholar 

  121. Bernal MC, Vicens P, Carrasco MC, Redolat R. Effects of nicotine on spatial learning in C57BL mice. Behav Pharmacol. 1999;10(3):333–6.

    CAS  PubMed  Google Scholar 

  122. Socci DJ, Sanberg PR, Arendash GW. Nicotine enhances Morris water maze performance of young and aged rats. Neurobiol Aging. 1995;16(5):857–60.

    CAS  PubMed  Google Scholar 

  123. Scerri C, Stewart C, Breen K, Balfour D. The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat. Psychopharmacology (Berl). 2006;184(3–4):540–6.

    CAS  Google Scholar 

  124. Matta SG, Balfour DJ, Benowitz NL, et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl). 2007;190(3):269–319.

    CAS  Google Scholar 

  125. Meck WH, Church RM, Olton DS. Hippocampus, time, and memory. Behav Neurosci. 1984;98(1):3–22.

    CAS  PubMed  Google Scholar 

  126. Davis HP, Baranowski JR, Pulsinelli WA, Volpe BT. Retention of reference memory following ischemic hippocampal damage. Physiol Behav. 1987;39(6):783–6.

    CAS  PubMed  Google Scholar 

  127. Olton DS, Feustle WA. Hippocampal function required for nonspatial working memory. Exp Brain Res. 1981;41(3–4):380–9.

    CAS  PubMed  Google Scholar 

  128. Levin ED. Chronic haloperidol administration does not block acute nicotine-induced improvements in radial-arm maze performance in the rat. Pharmacol Biochem Behav. 1997;58(4):899–902.

    CAS  PubMed  Google Scholar 

  129. Addy N, Levin ED. Nicotine interactions with haloperidol, clozapine and risperidone and working memory function in rats. Neuropsychopharmacology. 2002;27(4):534–41.

    CAS  PubMed  Google Scholar 

  130. Levin E, Icenogle L, Farzad A. Ketanserin attenuates nicotine-induced working memory improvement in rats. Pharmacol Biochem Behav. 2005;82(2):289–92.

    CAS  PubMed  Google Scholar 

  131. Levin ED, Sledge D, Baruah A, Addy NA. Ventral hippocampal NMDA blockade and nicotinic effects on memory function. Brain Res Bull. 2003;61(5):489–95.

    CAS  PubMed  Google Scholar 

  132. Levin ED, Kaplan S, Boardman A. Acute nicotine interactions with nicotinic and muscarinic antagonists: working and reference memory effects in the 16-arm radial maze. Behav Pharmacol. 1997;8(2–3):236–42.

    CAS  PubMed  Google Scholar 

  133. Levin ED, Torry D. Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology (Berl). 1996;123(1):88–97.

    CAS  Google Scholar 

  134. Arthur D, Levin ED. Chronic inhibition of alpha4beta2 nicotinic receptors in the ventral hippocampus of rats: impacts on memory and nicotine response. Psychopharmacology (Berl). 2002;160(2):140–5.

    CAS  Google Scholar 

  135. Kholdebarin E, Caldwell DP, Blackwelder WP, Kao M, Christopher NC, Levin ED. Interaction of nicotinic and histamine H3 systems in the radial-arm maze repeated acquisition task. Eur J Pharmacol. 2007;569(1–2):64–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Levin ED, Christopher NC, Briggs SJ, Rose JE. Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Brain Res Cogn Brain Res. 1993;1(3):137–43.

    CAS  PubMed  Google Scholar 

  137. Levin ED, Lee C, Rose JE, et al. Chronic nicotine and withdrawal effects on radial-arm maze performance in rats. Behav Neural Biol. 1990;53(2):269–76.

    CAS  PubMed  Google Scholar 

  138. Levin ED, Briggs SJ, Christopher NC, Rose JE. Persistence of chronic nicotine-induced cognitive facilitation. Behav Neural Biol. 1992;58(2):152–8.

    CAS  PubMed  Google Scholar 

  139. Levin ED, Briggs SJ, Christopher NC, Rose JE. Chronic nicotinic stimulation and blockade effects on working memory. Behav Pharmacol. 1993;4(2):179–82.

    CAS  PubMed  Google Scholar 

  140. Levin ED, Christopher NC, Weaver T, Moore J, Brucato F. Ventral hippocampal ibotenic acid lesions block chronic nicotine-induced spatial working memory improvement in rats. Cogn Brain Res. 1999;7(3):405–10.

    CAS  Google Scholar 

  141. Bettany JH, Levin ED. Ventral hippocampal alpha 7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacol Biochem Behav. 2001;70(4):467–74.

    CAS  PubMed  Google Scholar 

  142. Bancroft A, Levin ED. Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology. 2000;39(13):2770–8.

    CAS  PubMed  Google Scholar 

  143. Levin ED, Bradley A, Addy N, Sigurani N. Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience. 2002;109(4):757–65.

    CAS  PubMed  Google Scholar 

  144. Pocivavsek A, Icenogle L, Levin ED. Ventral hippocampal alpha7 and alpha4beta2 nicotinic receptor blockade and clozapine effects on memory in female rats. Psychopharmacology (Berl). 2006;188(4):597–604.

    CAS  Google Scholar 

  145. Castner SA, Smagin GN, Piser TM, et al. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry. 2011;69(1):12–8.

    CAS  PubMed  Google Scholar 

  146. Kenney JW, Gould TJ. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol Neurobiol. 2008;38(1):101–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Portugal GS, Gould TJ. Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res. 2008;193(1):1–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Rushforth SL, Steckler T, Shoaib M. Nicotine improves working memory span capacity in rats following sub-chronic ketamine exposure. Neuropsychopharmacology. 2011;36(13):2774–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Levin ED, Tizabi Y, Rezvani AH, Caldwell DP, Petro A, Getachew B. Chronic nicotine and dizocilpine effects on regionally specific nicotinic and NMDA glutamate receptor binding. Brain Res. 2005;1041(2):132–42.

    CAS  PubMed  Google Scholar 

  150. Timofeeva OA, Levin ED. Idazoxan blocks the nicotine-induced reversal of the memory impairment caused by the NMDA glutamate receptor antagonist dizocilpine. Pharmacol Biochem Behav. 2008;90(3):372–81.

    CAS  PubMed  Google Scholar 

  151. Carli M, Robbins TW, Evenden JL, Everitt BJ. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res. 1983;9(3):361–80.

    CAS  PubMed  Google Scholar 

  152. Cole BJ, Robbins TW. Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology (Berl). 1987;91(4):458–66.

    CAS  Google Scholar 

  153. Hoyle E, Genn RF, Fernandes C, Stolerman IP. Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology (Berl). 2006;189(2):211–23.

    CAS  Google Scholar 

  154. Young JW, Crawford N, Kelly JS, et al. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol. 2007;17(2):145–55.

    CAS  PubMed  Google Scholar 

  155. Bailey CDC, De Biasi M, Fletcher PJ, Lambe EK. The nicotinic acetylcholine receptor α5 subunit plays a key role in attention circuitry and accuracy. J Neurosci. 2010;30(27):9241–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Stolerman IP, Naylor CG, Mesdaghinia A, Morris HV. The duration of nicotine-induced attentional enhancement in the five-choice serial reaction time task: lack of long-lasting cognitive improvement. Behav Pharmacol. 2009;20(8):742–54.

    CAS  PubMed  Google Scholar 

  157. Young JW, Finlayson K, Spratt C, et al. Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology. 2004;29(5):891–900.

    CAS  PubMed  Google Scholar 

  158. Semenova S, Stolerman IP, Markou A. Chronic nicotine administration improves attention while nicotine withdrawal induces performance deficits in the 5-choice serial reaction time task in rats. Pharmacol Biochem Behav. 2007;87(3):360–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Shoaib M, Bizarro L. Deficits in a sustained attention task following nicotine withdrawal in rats. Psychopharmacology (Berl). 2005;178(2):211–22.

    CAS  Google Scholar 

  160. Amitai N, Markou A. Chronic nicotine improves cognitive performance in a test of attention but does not attenuate cognitive disruption induced by repeated phencyclidine administration. Psychopharmacology (Berl). 2009;202(1–3):275–86.

    CAS  Google Scholar 

  161. Grottick AJ, Higgins GA. Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res. 2000;117(1–2):197–208.

    CAS  PubMed  Google Scholar 

  162. Blondel A, Sanger DJ, Moser PC. Characterization of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies [in process citation]. Psychopharmacology (Berl). 2000;149(3):293–305.

    CAS  Google Scholar 

  163. Hahn B, Shoaib M, Stolerman IP. Involvement of the prefrontal cortex but not the dorsal hippocampus in the attention-enhancing effects of nicotine in rats. Psychopharmacology (Berl). 2003;168(3):271–9.

    CAS  Google Scholar 

  164. Allison C, Shoaib M. Nicotine improves performance in an attentional set shifting task in rats. Neuropharmacology. 2013;64:314–20.

    CAS  PubMed  Google Scholar 

  165. Ortega LA, Tracy BA, Gould TJ, Parikh V. Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res. 2013;238:134–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Keller JJ, Keller AB, Bowers BJ, Wehner JM. Performance of α7 nicotinic receptor null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav Brain Res. 2005;162(1):143–52.

    CAS  PubMed  Google Scholar 

  167. Leach PT, Cordero KA, Gould TJ. The effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on performance of a cued appetitive response. Behav Neurosci. 2013;127(2):303–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Heishman SJ. Behavioral and cognitive effects of smoking: relationship to nicotine addiction. Nicotine Tob Res. 1999;1 Suppl 2:S143–7.

    PubMed  Google Scholar 

  169. Heishman S, Kleykamp B, Singleton E. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berl). 2010;210(4):453–69.

    CAS  Google Scholar 

  170. Gould TJ. Nicotine and hippocampus-dependent learning: implications for addiction. Mol Neurobiol. 2006;34(2):93–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Due DL, Huettel SA, Hall WG, Rubin DC. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2002;159(6):954–60.

    PubMed  Google Scholar 

  172. Franklin TR, Wang Z, Wang J, et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology. 2007;32(11):2301–9.

    CAS  PubMed  Google Scholar 

  173. McClernon FJ, Kozink RV, Rose JE. Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology. 2008;33(9):2148–57.

    CAS  PubMed  Google Scholar 

  174. Ashare RL, Falcone M, Lerman C. Cognitive function during nicotine withdrawal: Implications for nicotine dependence treatment. Neuropharmacology. 2013;76(Pt B):581–91.

    PubMed  Google Scholar 

  175. Hendricks PS, Ditre JW, Drobes DJ, Brandon TH. The early time course of smoking withdrawal effects. Psychopharmacology (Berl). 2006;187(3):385–96.

    CAS  Google Scholar 

  176. Hughes JR, Keenan RM, Yellin A. Effect of tobacco withdrawal on sustained attention. Addict Behav. 1989;14(5):577–80.

    CAS  PubMed  Google Scholar 

  177. Jacobsen LK, Slotkin TA, Westerveld M, Mencl WE, Pugh KR. Visuospatial memory deficits emerging during nicotine withdrawal in adolescents with prenatal exposure to active maternal smoking. Neuropsychopharmacology. 2005;31(7):1550–61.

    PubMed  Google Scholar 

  178. Rhodes J, Hawk L, Ashare R, Schlienz N, Mahoney M. The effects of varenicline on attention and inhibitory control among treatment-seeking smokers. Psychopharmacology (Berl). 2012;223(2):131–8.

    CAS  Google Scholar 

  179. Park S, Knopick C, McGurk S, Meltzer HY. Nicotine impairs spatial working memory while leaving spatial attention intact. Neuropsychopharmacology. 2000;22(2):200–9.

    CAS  PubMed  Google Scholar 

  180. Jacobsen LK, Krystal JH, Mencl WE, Westerveld M, Frost SJ, Pugh KR. Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol Psychiatry. 2005;57(1):56–66.

    PubMed  Google Scholar 

  181. Xu J, Mendrek A, Cohen MS, et al. Effects of acute smoking on brain activity vary with abstinence in smokers performing the N-back task: a preliminary study. Psychiatry Res. 2006;148(2–3):103–9.

    PubMed Central  PubMed  Google Scholar 

  182. Mendrek A, Monterosso J, Simon SL, et al. Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav. 2006;31(5):833–44.

    PubMed Central  PubMed  Google Scholar 

  183. Jacobsen LK, Mencl WE, Constable RT, Westerveld M, Pugh KR. Impact of smoking abstinence on working memory neurocircuitry in adolescent daily tobacco smokers. Psychopharmacology (Berl). 2007;193(4):557–66.

    CAS  Google Scholar 

  184. Patterson F, Jepson C, Strasser AA, et al. Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry. 2009;65(2):144–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Patterson F, Jepson C, Loughead J, et al. Working memory deficits predict short-term smoking resumption following brief abstinence. Drug Alcohol Depend. 2010;106(1):61–4.

    PubMed Central  PubMed  Google Scholar 

  186. Breese CR, Marks MJ, Logel J, et al. Effect of smoking history on [H-3]nicotine binding in human postmortem brain. J Pharmacol Exp Ther. 1997;282(1):7–13.

    CAS  PubMed  Google Scholar 

  187. Staley JK, Krishnan-Sarin S, Cosgrove KP, et al. Human tobacco smokers in early abstinence have higher levels of β2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci. 2006;26(34):8707–14.

    CAS  PubMed  Google Scholar 

  188. Cosgrove KP, Batis J, Bois F, et al. β2-nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry. 2009;66(6):666–76.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Gould Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gould, T.J. (2014). The Effects of Nicotine on Learning and Memory. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_11

Download citation

Publish with us

Policies and ethics