Skip to main content

Glycosidases: Inborn Errors of Glycosphingolipid Catabolism

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay–Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4MU:

4-Methylumbelliferyl

CNS:

Central nerve system

GALC:

Galactocerebrosidase

GalSph:

Galactosylsphingosine

GlcSph:

Glucosylsphingosine

GM2-AP:

GM2 activator protein

GSL:

Glycosphingolipid

Hex A:

β-Hexosaminidase A

Hex B:

β-Hexosaminidase B

PNS:

Peripheral nerve system

TGM2:

Taurine-conjugated GM2

TSD:

Tay–Sachs disease

References

  • Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A. 2008;105:2812–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson W. A case of angiokeratoma. Br J Dermatol. 1898;10:113–7.

    Article  Google Scholar 

  • Bensaude I, Callahan J, Philippart M. Fabry’s disease as an α-galactosidosis: evidence for an α-configuration in trihexosyl ceramide. Biochem Biophys Res Commun. 1971;43:913–8.

    Article  CAS  PubMed  Google Scholar 

  • Boyd RE, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman BA, et al. Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem. 2013;56:2705–25.

    Article  CAS  PubMed  Google Scholar 

  • Brady RO. Enzyme replacement for lysosomal diseases. Annu Rev Med. 2006;57:283–96.

    Article  CAS  PubMed  Google Scholar 

  • Brady RO, Kanfer JN, Shapiro D. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun. 1965;18:221–5.

    Article  CAS  PubMed  Google Scholar 

  • Capper A, Epstein H, Schless RA. Gaucher’s disease. Report of a case with presentation of a table differentiating the lipoid disturbances. Am J Med Sci. 1934;188:84–93.

    Article  Google Scholar 

  • Chou MY, Li S-C, Kiso M, Hasegawa A, Li Y-T. Purification and characterization of sialidase L, a NeuAc α2 → 3Gal-specific sialidase. J Biol Chem. 1994;269:18821–6.

    CAS  PubMed  Google Scholar 

  • Clarke JT, Wolfe LS, Perlin AS. Evidence for a terminal α-d-galactopyranosyl residue in galactosylgalactosylglucosylceramide from human kidney. J Biol Chem. 1971;246:5563–9.

    CAS  PubMed  Google Scholar 

  • Conzelmann E, Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978;75:3979–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Duve C. Lysosomes revisited. Eur J Biochem. 1983;137:391–7.

    Article  PubMed  Google Scholar 

  • Dean KJ, Sung SS, Sweeley CC. The identification of α-galactosidase B from human liver as an α-N-acetylgalactosaminidase. Biochem Biophys Res Commun. 1977;77:1411–7.

    Article  CAS  PubMed  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM. Chapter 150: α-Galactosidase A deficiency: Fabry disease. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Desnick RJ, Schindler D. Chapter 139: α-N-Acetylgalactosaminidase deficiency: Schindler disease. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Dong DL, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-β-d-glucosaminidase from rat spleen cytosol. J Biol Chem. 1994;269:19321–30.

    Google Scholar 

  • Fabry J. Ein Beitrag Zur Kenntnis der Purura haemorrhagica nodularis (Purpura papulosa hemorrhagica Habrae). Arch Dermatol Syph. 1898;43:187–200.

    Article  Google Scholar 

  • Furst W, Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992;1126:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Zimran A, editors. Gaucher disease. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2007.

    Google Scholar 

  • Gaucher PCE. De l’epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucemie. M.D. Thesis, Paris; 1882.

    Google Scholar 

  • Goldman JE, Yamanaka T, Rapin I, Adachi M, Suzuki K, Suzuki K. The AB-variant of GM2-gangliosidosis. Clinical, biochemical, and pathological studies of two patients. Acta Neuropathol. 1980;52:189–202.

    Article  CAS  PubMed  Google Scholar 

  • Grabowski GA, Petsko GA, Kolodny EH. Chapter 146: Gaucher disease. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K, Suzuki K. Chapter 153: The GM2. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Hakomori S-I, Siddiqui B, Li Y-T, Li S-C, Hellerqvist CG. Anomeric structure of globoside and ceramide trihexoside of human erythrocytes and hamster fibroblasts. J Biol Chem. 1971;246:2271–7.

    CAS  PubMed  Google Scholar 

  • Halliday N, Deuel Jr HJ, Tragerman LJ, Ward WE. On the isolation of a glucose-containing cerebroside from spleen in a case of Gaucher’s disease. J Biol Chem. 1940;132:171–80.

    CAS  Google Scholar 

  • Handa S, Ariga T, Miyatake T, Yamakawa T. Presence of α-anomeric glycosidic configuration in the glycolipids accumulated in kidney with Fabry’s disease. J Biochem (Tokyo). 1971;69:625–7.

    CAS  Google Scholar 

  • Hannun YA, Bell RM. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987;235:670–4.

    Article  CAS  PubMed  Google Scholar 

  • Hechtman P. Characterization of an activating factor required for hydrolysis of GM2 ganglioside catalyzed by hexosaminidase A. Can J Biochem. 1977;55:315–24.

    Article  CAS  PubMed  Google Scholar 

  • Hechtman P, Gordon BA, Ng Ying Kin NM. Deficiency of the hexosaminidase A activator protein in a case of GM2 gangliosidosis; variant AB. Pediatr Res. 1982;16:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Li Y-T, Li S-C. The protein activator specific for the enzymic hydrolysis of GM2 ganglioside in normal human brain and brains of three types of GM2 gangliosidosis. J Neurochem. 1983;40:168–75.

    Article  CAS  PubMed  Google Scholar 

  • Ho MW, O’Brien JS, Radin NS, Erickson JS. Glucocerebrosidase: reconstitution of activity from macromolecular components. Biochem J. 1973;131:173–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollak CE, van Weely S, van Oers MHJ, Aerts JMFG. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93:1288–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hultberg B. N-Acetylhexosaminidase activities in Tay-Sachs disease. Lancet. 1969;2:1195.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Hiraiwa M, O’Brien JS. Saposins: structure, function, distribution, and molecular genetics. J Lipid Res. 1992;33:1255–67.

    CAS  PubMed  Google Scholar 

  • Klenk E, Lauenstein K. Uber die zuckerhaltigen lipoide der formbestandteile des menschlichen blutes. Hoppe Seyler’s Z Physiol Chem. 1951;288:220–8.

    CAS  PubMed  Google Scholar 

  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8:931–7.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Goto I, Okada S, Orii T, Ohno K, Nakano T. Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses. J Neurochem. 1992;59:1452–8.

    Article  CAS  PubMed  Google Scholar 

  • Koerner Jr TAW, Cary LW, Li S-C, Li Y-T. Carbon 13 NMR spectroscopy of a cerebroside. Proof of the β-pyranosyl structure of d-glucosylceramide. J Biol Chem. 1979;254:2326–8.

    CAS  PubMed  Google Scholar 

  • Koerner Jr TA, Prestegard JH, Demou PC, Yu RK. High-resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations. Biochemistry. 1983;22:2676–87.

    Article  CAS  PubMed  Google Scholar 

  • Krabbe K. A new familial, infantile form of diffuse brain sclerosis. Brain. 1916;39:74–114.

    Article  Google Scholar 

  • Kuhn R, Wiegandt H. Die konstitution der ganglio-N-tetraose und des gangliosids GI. Chem Ber. 1963;96:866–80.

    Article  CAS  Google Scholar 

  • Kytzia HJ, Hinrichs U, Maire I, Suzuki K, Sandhoff K. Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity. EMBO J. 1983;2:1201–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ledeen RW, Salsman K. Structure of the Tay-Sachs ganglioside I. Biochemistry. 1965;4:2225–33.

    Article  CAS  Google Scholar 

  • Li Y-T, Li S-C. Anomeric configuration of galactose residues in ceramide trihexosides. J Biol Chem. 1971;246:3769–71.

    CAS  PubMed  Google Scholar 

  • Li S-C, Li Y-T. An activator stimulating the enzymic hydrolysis of sphingoglycolipids. J Biol Chem. 1976;251:1159–63.

    CAS  PubMed  Google Scholar 

  • Li Y-T, Li S-C. Activator proteins related to the hydrolysis of glycosphingolipids catalyzed by lysosomal glycosidases. In: Dingle JT, Dean RT, Sly W, editors. Lysosomes in biology and pathology, vol. 7. Amsterdam: Elsevier Science Publishers B.V.; 1984. p. 99–117.

    Google Scholar 

  • Li Y-T, Li S-C. Enzymatic hydrolysis of glycosphingolipids. Anal Biochem. 1999;273:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Li Y-T, Mazzotta MY, Wan CC, Orth R, Li S-C. Hydrolysis of Tay-Sachs ganglioside by β-hexosaminidase A of human liver and urine. J Biol Chem. 1973;248:7512–5.

    CAS  PubMed  Google Scholar 

  • Li S-C, Nakamura T, Ogamo A, Li Y-T. Evidence for the presence of two separate protein activators for the enzymic hydrolysis of GM1 and GM2 gangliosides. J Biol Chem. 1979;254:10592–5.

    CAS  PubMed  Google Scholar 

  • Li S-C, Hirabayashi Y, Li Y-T. A new variant of type-AB GM2-gangliosidosis. Biochem Biophys Res Commun. 1981;101:479–85.

    Article  CAS  PubMed  Google Scholar 

  • Li S-C, Sonnino S, Tettamanti G, Li Y-T. Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J Biol Chem. 1988;263:6588–91.

    CAS  PubMed  Google Scholar 

  • Li Y-T, Li S-C, Hasegawa A, Ishida H, Kiso M, Bernardi A, et al. Structural basis for the resistance of Tay-Sachs ganglioside GM2 to enzymatic degradation. J Biol Chem. 1999;274:10014–8.

    Article  CAS  PubMed  Google Scholar 

  • Li S-C, Li Y-T, Moriya S, Miyagi T. Degradation of GM1 and GM2 by mammalian sialidases. Biochem J. 2001;360:233–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y-T, Maskos K, Chou CW, Cole RB, Li S-C. Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay-Sachs brain. J Biol Chem. 2003;278:35286–91.

    Article  CAS  PubMed  Google Scholar 

  • Li Y-T, Li S-C, Kiso M, Ishida H, Mauri L, Raimondi L, et al. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility. Biochim Biophys Acta. 2008;1780:353–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieb H. Cerebrosidspeicherung bei splenomegalie, typsu Gaucher. Hoppe Seyler’s Z Physiol Chem. 1924;140:305–13.

    Article  CAS  Google Scholar 

  • Lieb H. Cerebrosidspeicherung bei morbus Gaucher III. Mitteilung. Hoppe Seyler’s Z Physiol Chem. 1927;170:60–7.

    Article  CAS  Google Scholar 

  • Lieb H, Mladenovic M. Cerebrosidspeicherung bei morbus Gaucher II. Mitteilung. Hoppe Seyler’s Z Physiol Chem. 1929;181:208–20.

    Article  CAS  Google Scholar 

  • Makita A, Yamakawa T. The glycolipids of the brain of Tay-Sachs’ disease. The chemical structures of a globoside and main ganglioside. Jpn J Exp Med. 1963;33:361–8.

    CAS  PubMed  Google Scholar 

  • McConnell JS, Forbes JC, Apperly FL. Notes on chemical studies of a Gaucher spleen. Am J Med Sci. 1939;197:90–2.

    Article  CAS  Google Scholar 

  • Mehl E, Jatzkewitz H. Eine cerebrosidsulfatase aus schweineniere. Hoppe Seylers Z Physiol Chem. 1964;339:260–76.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 2012;22:880–96.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, et al. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem. 1999;274:5004–11.

    Article  CAS  PubMed  Google Scholar 

  • Miyatake T, Suzuki K. Globoid cell leukodystrophy: additional deficiency of psychosine galactosidase. Biochem Biophys Res Commun. 1972;48:538–43.

    Article  CAS  Google Scholar 

  • Neuenhofer S, Conzelmann E, Schwarzmann G, Egge H, Sandhoff K. Occurrence of lysoganglioside lyso-GM2 (II3-Neu5Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain. Biol Chem Hoppe Seyler. 1986;367:241–4.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem. 1982;39:709–18.

    Article  CAS  PubMed  Google Scholar 

  • Ockerman PA. Identity of β-glucosidase, β-xylosidase and one of the β-galactosidase activities in human liver when assayed with 4-methylumbelliferyl-β-d-glycosides studies in cases of Gaucher’s disease. Biochim Biophys Acta. 1968;165:59–62.

    Article  CAS  PubMed  Google Scholar 

  • Ohman R, Rosenberg A, Svennerholm L. Human brain sialidase. Biochemistry. 1970;9:3774–82.

    Article  CAS  PubMed  Google Scholar 

  • Okada S, O’Brien JS. Tay-Sachs disease: generalized absence of a β-d-N-acetylhexosaminidase component. Science. 1969;165:698–700.

    Article  CAS  PubMed  Google Scholar 

  • Okada S, O’Brien JS. Generalized gangliosidosis: β-galactosidase deficiency. Science. 1968;160:1002–4.

    Article  CAS  PubMed  Google Scholar 

  • Orvisky E, Park JK, LaMarca ME, Ginns EI, Martin BM, Tayebi N, et al. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Mol Genet Metab. 2002;76:262–70.

    Article  CAS  PubMed  Google Scholar 

  • Patrick AD. A deficiency of glucocerebrosidase in Gaucher’s disease. Biochem J. 1965;97:17c–8.

    CAS  Google Scholar 

  • Radin NS. Treating glucosphingolipid disorders by chemotherapy: use of approved drugs and over-the-counter remedies. J Inherit Metab Dis. 2000;23:767–77.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan SS, Mumford RA, Kanfer JN. Deficiency of glucosylsphingosine: β-glucosidase in Gaucher disease. Biochem Biophys Res Commun. 1973;54:256–63.

    Article  CAS  PubMed  Google Scholar 

  • Raghavan SS, Mumford RA, Kanfer JN. Isolation and characterization of glucosylsphingosine from Gaucher’s spleen. J Lipid Res. 1974;15:484–90.

    CAS  PubMed  Google Scholar 

  • Robinson D, Stirling JL. N-Acetyl-β-glucosaminidases in human spleen. Biochem J. 1968;107:321–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg A, Chargaff E. A reinvestigation of the cerebroside deposited in Gaucher’s disease. J Biol Chem. 1958;233:1323–6.

    CAS  PubMed  Google Scholar 

  • Rosengren B, Mansson JE, Svennerholm L. Composition of gangliosides and neutral glycosphingolipids of brain in classical Tay-Sachs and Sandhoff disease: more lyso-GM2 in Sandhoff disease? J Neurochem. 1987;49:834–40.

    Article  CAS  PubMed  Google Scholar 

  • Sandhoff K. Variation of β-N-acetylhexosaminidase-pattern in Tay-Sachs disease. FEBS Lett. 1969;4:351–4.

    Article  CAS  PubMed  Google Scholar 

  • Sandhoff K, Kolter T, Harzer K, Scheper U, Remmel N. Chapter 134: Sphingolipid activator proteins. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther. 2006;13:839–49.

    Article  CAS  PubMed  Google Scholar 

  • Schram AW, Hamers MN, Tager JM. The identity of α-galactosidase B from human liver. Biochim Biophys Acta. 1977;482:138–44.

    Article  CAS  PubMed  Google Scholar 

  • Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, et al. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis. 2003;14:595–601.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro D, Flowers HM. Synthetic studies on sphingolipids. VI. The total synthesis of cerasine and phrenosine. J Am Chem Soc. 1961;83:3327–32.

    Article  CAS  Google Scholar 

  • Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonderfeld S, Brendler S, Sandhoff K, Galjaard H, Hoogeveen AT. Genetic complementation in somatic cell hybrids of four variants of infantile GM2 gangliosidosis. Hum Genet. 1985;71:196–200.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside β-galactosidase. Proc Natl Acad Sci U S A. 1970;66:302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Nanba E, Matsuda J, Higaki K, Oshima A. Chapter 151: β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Svennerholm L. The chemical structure of normal human brain and Tay-Sachs gangliosides. Biochem Biophys Res Commun. 1962;9:436–41.

    Article  CAS  PubMed  Google Scholar 

  • Sweeley CC, Klionsky B. Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem. 1963;238:3148–50.

    CAS  PubMed  Google Scholar 

  • Sweeley CC, Snyder Jr PD, Griffin CE. Chemistry of glycosphingolipids Fabry’s disease. Chem Phys Lipids. 1970;4:393–408.

    Article  CAS  PubMed  Google Scholar 

  • Tay W. Symmetrical changes in the region of the yellow spot in each eye of an infant. Trans Ophthalmol Soc UK. 1881;1:55–7.

    Google Scholar 

  • Thudichum JLW. Researches on the chemical configuration of the brain. Report of the Medical Officer of the Privy Council and Local Government Board 3. No. 5; 1874; p. 113.

    Google Scholar 

  • Tyagarajan K, Forte JG, Townsend RR. Exoglycosidase purity and linkage specificity: assessment using oligosaccharide substrates and high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology. 1996;6:83–93.

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Esko JD, Colley KJ. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009. p. 37–46.

    Google Scholar 

  • Wenger DA, Suzuki K, Suzuki Y, Suzuki K. Chapter 147: Galactosylceramide lipidosis: Globoid cell leukodystrophy (Krabbe disease). In: Valle D, Vogelstein B, Kinzler KW, Antonarakis S, Ballabio A, editors. The online metabolic & molecular bases of inherited disease (Scriver’s OMMBID). McGraw-Hill Global Education Holdings; 2013. Available from: http://www.ommbid.com/

  • Wierzbicka-Wos A, Bartasun P, Cieslinski H, Kur J. Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnol. 2013;13:22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woollen JW, Walker PG, Heyworth R. Studies on glucosaminidase. 6. N-Acetyl-β-glucosaminidase and N-acetyl-β-galactosaminidase activities of a variety of enzyme preparations. Biochem J. 1961;79:294–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright CS, Li S-C, Rastinejad F. Crystal structure of human GM2-activator protein with a novel β-cup topology. J Mol Biol. 2000;304:411–22.

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa T, Suzuki S. The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. III. Globoside, the sugar-containing lipid of human blood stroma. J Biochem (Tokyo). 1952;39:393–402.

    CAS  Google Scholar 

  • Yuziuk JA, Bertoni C, Beccari T, Orlacchio A, Wu Y-Y, Li S-C, et al. Specificity of mouse GM2 activator protein and β-N-acetylhexosaminidases A and B. Similarities and differences with their human counterparts in the catabolism of GM2. J Biol Chem. 1998;273:66–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Su-Chen Li for her invaluable input and suggestions. We would also like to thank Mr. Gilbert Estrada for his proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Teh Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashida, H., Li, YT. (2014). Glycosidases: Inborn Errors of Glycosphingolipid Catabolism. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_21

Download citation

Publish with us

Policies and ethics