Skip to main content

The Apicoplast: A Parasite’s Symbiont

  • Chapter
  • First Online:
Plastid Biology

Part of the book series: Advances in Plant Biology ((AIPB,volume 5))

Abstract

The endosymbiotic capture of a red alga brought photosynthesis to a previously heterotrophic protist, and marked the birth of a now very diverse new branch of the eukaryotic tree of life. Among the many plastid-bearing descendants of this event are the Apicomplexa, a phylum of obligate animal parasites. These include the causative agents of important diseases like malaria and toxoplasmosis. The apicomplexan plastid, or apicoplast, has experienced dramatic changes in function, organization and protein content as Apicomplexa adapted from photosynthesis to parasitism. In this chapter we outline the broad strokes of the organelle’s remarkable evolutionary history and follow how these changes shaped its biology and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

ALA:

Aminolevulinate

ALAD:

Aminolevulinate dehydratase

ALAS:

Aminolevulinate synthase

CMK:

4-diphosphocytidyl-2-C-methyl-d-erythritol kinase

CMS:

4-diphosphocytidyl-2-C-methyl-d-erythritol synthase

Cox2:

Cytochrome oxidase subunit 2

CPO:

Coproporphyrinogen III oxidase

DMAPP:

Dimethylallyl pyrophosphate

DOXP:

1-deoxy-d-xylulose-5-phosphate

DOXPRI:

DOXP-reductoisomerase

ER:

Endoplasmic reticulum

ERAD:

Endoplasmatic reticulum associated degradation

FC:

Ferrochelatase

GPTs:

Glucose 6-phosphate/phosphate transporter

IPP:

Isopentenyl pyrophosphate

LipA:

Lipoic acid synthase

MECS:

2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase

PB:

Porphobilinogen

PI3P:

Phosphatidylinositol 3-monophosphate

PPO:

Protoporphyrinogen IX oxidase

PPT:

Phosphoenolpyruvate phosphate/phosphate transporters

PPTs:

Plastid phosphate translocators

Tic:

Translocon of the inner chloroplast membrane

Toc:

Translocon of the outer chloroplast membrane

TP:

Transit peptide

TPT:

Triose phosphate/phosphate transporters

UROD:

Uroporphyrinogen decarboxylase

UROS:

Uroporphyrinogen-III synthase

XPTs:

Xylulose 5-phosphate/phosphate transporter

3PGA :

3-phosphoglyceraldehyde

References

  1. Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161:672–687

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived ERAD system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Agrawal S, Nair S, Sheiner L, Striepen B, (2010) The apicoplast: an ancient algal endosymbiont of apicomplexa. In: De Souza W (ed) Structures and organelles in pathogenic protists. Springer, Berlin

    Google Scholar 

  5. Ahmed A, Sharma YD (2008) Ribozyme cleavage of Plasmodium falciparum gyrase A gene transcript affects the parasite growth. Parasitol Res 103:751–763

    PubMed  Google Scholar 

  6. Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Arenas AF, Escobar AJ, Gomez-Marin JE (2008) Evolutionary origin of the protozoan parasites histone-like proteins (HU). Silico Biol 8:15–20

    CAS  Google Scholar 

  8. Bahl A et al (2003) PlasmoDB: the plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31:212–215

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Baumeister S et al (2011) Fosmidomycin uptake into plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. PLoS ONE 6:e19334

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y, Joiner KA (1995) Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest 95:367–376

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Blanchard JL, Hicks JS (1999) The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46:367–375

    PubMed  CAS  Google Scholar 

  12. Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56:9–15

    PubMed  CAS  Google Scholar 

  13. Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B (2009) The Toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 7:62–73

    PubMed  PubMed Central  Google Scholar 

  14. Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Caballero MC, Pedroni MJ, Palmer GH, Suarez CE, Davitt C, Lau AO (2011) Characterization of acyl carrier protein and LytB in Babesia bovis apicoplast. Mol Biochem Parasitol 181:125–133

    PubMed  Google Scholar 

  16. Camps M, Arrizabalaga G, Boothroyd J (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol Microbiol 43:1309–1318

    PubMed  CAS  Google Scholar 

  17. Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    PubMed  CAS  Google Scholar 

  19. Cavalier-Smith T (2004) Only six kingdoms of life. Proc Biol Sci 271:1251–1262

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Chahal HK, Dai Y, Saini A, Ayala-Castro C, Outten FW (2009) The SufBCD Fe-S scaffold complex interacts with SufA for Fe-S cluster transfer. Biochemistry 48:10644–10653

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Chen X, Smith MD, Fitzpatrick L, Schnell DJ (2002) In vivo analysis of the role of atTic20 in protein import into chloroplasts. Plant Cell 14:641–654

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Clastre M, Goubard A, Prel A, Mincheva Z, Viaud-Massuart MC, Bout D, Rideau M, Velge-Roussel F, Laurent F (2007) The methylerythritol phosphate pathway for isoprenoid biosynthesis in coccidia: presence and sensitivity to fosmidomycin. Exp Parasitol 116:375–384

    PubMed  CAS  Google Scholar 

  23. Clough B, Rangachari K, Strath M, Preiser PR, Wilson RJ (1999) Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist 150:189–195

    PubMed  CAS  Google Scholar 

  24. Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25:3214–3222

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Creasey A, Mendis K, Carlton J, Williamson D, Wilson I, Carter R (1994) Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol 65:95–98

    PubMed  CAS  Google Scholar 

  26. Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50:3124–3131

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Dar MA, Sharma A, Mondal N, Dhar SK (2007) Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. Eukaryot Cell 6:398–412

    PubMed  CAS  PubMed Central  Google Scholar 

  28. DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113(Pt 22):3969–3977

    PubMed  CAS  Google Scholar 

  29. DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118:565–574

    PubMed  CAS  Google Scholar 

  30. DeRocher AE, Coppens I, Karnataki A, Gilbert LA, Rome ME, Feagin JE, Bradley PJ, Parsons M (2008) A thioredoxin family protein of the apicoplast periphery identifies abundant candidate transport vesicles in Toxoplasma gondii. Eukaryot Cell 7:1518–1529

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Douglas S et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    PubMed  CAS  Google Scholar 

  32. Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A 101:15386–15391

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Dubremetz JF, Garcia-Reguet N, Conseil V, Fourmaux MN (1998) Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol 28:10071013

    Google Scholar 

  34. Eicks M, Maurino V, Knappe S, Flugge UI, Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 128:512522

    Google Scholar 

  35. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    PubMed  CAS  Google Scholar 

  36. Ellis KE, Clough B, Saldanha JW, Wilson RJ (2001) Nifs and Sufs in malaria. Mol Microbiol 41:973–981

    PubMed  CAS  Google Scholar 

  37. Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426

    PubMed  CAS  Google Scholar 

  38. Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ (1992) Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extra chromosomal DNAs are limited to core sequences. Nucleic Acids Res 20:879–887

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 3:140–150

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Ferguson DJ, Henriquez FL, Kirisits MJ, Muench SP, Prigge ST, Rice DW, Roberts CW, McLeod RL (2005) Maternal inheritance and stage-specific variation of the apicoplast in Toxoplasma gondii during development in the intermediate and definitive host. Eukaryot Cell 4:814–826

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Ferguson DJ et al (2007) Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. Int J Parasitol 37:3351

    Google Scholar 

  42. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    PubMed  CAS  Google Scholar 

  43. Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Fleige T, Fischer K, Ferguson DJ, Gross U, Bohne W (2007) Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6:984–996

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Fleige T, Limenitakis J, Soldati-Favre D (2010) Apicoplast: keep it or leave it. Microbes Infect 12:253–262

    PubMed  Google Scholar 

  46. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    PubMed  CAS  Google Scholar 

  47. Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8:343–357

    PubMed  CAS  Google Scholar 

  48. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155

    PubMed  CAS  Google Scholar 

  49. Funes S, Reyes-Prieto A, Perez-Martinez X, Gonzalez-Halphen D (2004) On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect 6:305–311

    PubMed  Google Scholar 

  50. Gardner MJ, Feagin JE, Moore DJ, Spencer DF, Gray MW, Williamson DH, Wilson RJ (1991) Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol 48:77–88

    PubMed  CAS  Google Scholar 

  51. Gardner MJ, Williamson DH, Wilson RJ (1991) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44:115–123

    PubMed  CAS  Google Scholar 

  52. Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH, Wilson RJ (1993) Sequence and organization of large subunit rRNA genes from the extra chromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic Acids Res 21:1067–1071

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH, Wilson RJ (1994) Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol 66:221–231

    PubMed  CAS  Google Scholar 

  54. Gardner MJ, Preiser P, Rangachari K, Moore D, Feagin JE, Williamson DH, Wilson RJ (1994) Nine duplicated tRNA genes on the plastid-like DNA of the malaria parasite Plasmodium falciparum. Gene 144:307–308

    PubMed  CAS  Google Scholar 

  55. Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208

    PubMed  CAS  Google Scholar 

  56. Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, Striepen B, Higgins MK (2012) Tic22 is an essential chaperone required for protein import into the apicoplast. J Biol Chem 287(47):39505–39512. doi: 10.1074/jbc.M112.405100

    Google Scholar 

  57. Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S (2007) Chloroplast division. Traffic 8:451–461

    PubMed  CAS  Google Scholar 

  58. Glynn JM, Froehlich JE, Osteryoung KW (2008) Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20:2460–2470

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Goodman CD, McFadden GI (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets 8:15–30

    PubMed  CAS  Google Scholar 

  60. Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3:884–890

    PubMed  CAS  Google Scholar 

  61. Gubbels MJ, Vaishnava S, Boot N, Dubremetz JF, Striepen B (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119:2236–2245

    PubMed  CAS  Google Scholar 

  62. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713

    PubMed  CAS  Google Scholar 

  63. Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3:663–674

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730–1735

    PubMed  CAS  Google Scholar 

  65. Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55:487–496

    PubMed  CAS  Google Scholar 

  66. He CY, Striepen B, Pletcher CH, Murray JM, Roos DS (2001) Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 276:28436–28442

    PubMed  CAS  Google Scholar 

  67. Heaslip AT, Dzierszinski F, Stein B, Hu K (2010) TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathog 6:e1000754

    PubMed  PubMed Central  Google Scholar 

  68. Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    PubMed  CAS  Google Scholar 

  69. Holz GG Jr (1977) Lipids and the malarial parasite. Bull World Health Organ 55:237–248

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Howe CJ, Purton S (2007) The little genome of apicomplexan plastids: its raison d’etre and a possible explanation for the ‘delayed death’ phenomenon. Protist 158:121–133

    PubMed  CAS  Google Scholar 

  71. Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954

    PubMed  PubMed Central  Google Scholar 

  72. Jomaa H et al (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    PubMed  CAS  Google Scholar 

  73. Kalanon M, Tonkin CJ, McFadden GI (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1146–1154

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flugge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10:105–117

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M (2007) Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 63:1653–1668

    PubMed  CAS  Google Scholar 

  76. Karnataki A, Derocher AE, Coppens I, Feagin JE, Parsons M (2007) A membrane protease is targeted to the relict plastid of Toxoplasma via an internal signal sequence. Traffic 8:1543–1553

    PubMed  CAS  Google Scholar 

  77. Karnataki A, DeRocher AE, Feagin JE, Parsons M (2009) Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166:126–133

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    PubMed  Google Scholar 

  80. Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    PubMed  CAS  Google Scholar 

  81. Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275:1485–1489

    PubMed  CAS  Google Scholar 

  82. Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143:991–1002

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Kumar B, Chaubey S, Shah P, Tanveer A, Charan M, Siddiqi MI, Habib S (2011) Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron-sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum. Int J Parasitol 41:991–999

    PubMed  CAS  Google Scholar 

  84. Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW (2007) SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J Biol Chem 282:13342–13350

    PubMed  CAS  Google Scholar 

  85. Legesse-Miller A, Massol RH, Kirchhausen T (2003) Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol Biol Cell 14:1953–1963

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Lell B et al (2003) Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob Agents Chemother 47:735–738

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749–763

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Lim L, Linka M, Mullin KA, Weber AP, McFadden GI (2010) The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett 584:549–554

    PubMed  CAS  Google Scholar 

  89. Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    PubMed  CAS  Google Scholar 

  90. Ling Y, Sahota G, Odeh S, Chan JM, Araujo FG, Moreno SN, Oldfield E (2005) Bisphosphonate inhibitors of Toxoplasma gondi growth: in vitro, QSAR, and in vivo investigations. J Med Chem 48:3130–3140

    PubMed  CAS  Google Scholar 

  91. Lizundia R, Werling D, Langsley G, Ralph SA (2009) Theileria apicoplast as a target for chemotherapy. Antimicrob Agents Chemother 53:1213–1217

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Lorestani A, Sheiner L, Yang K, Robertson SD, Sahoo N, Brooks CF, Ferguson DJ, Striepen B, Gubbels MJ (2010) A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis. PLoS ONE 5:e12302

    PubMed  PubMed Central  Google Scholar 

  93. Matsuzaki M, Kikuchi T, Kita K, Kojima S, Kuroiwa T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218:180–191

    PubMed  CAS  Google Scholar 

  94. Mazumdar J, Striepen B (2007) Make it or take it: fatty acid metabolism of apicomplexan parasites. Eukaryot Cell 6:1727–1735

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Mazumdar J EHW, Masek K CAH, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A 103:13192–13197

    PubMed  PubMed Central  Google Scholar 

  96. McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272:2046–2049

    PubMed  CAS  Google Scholar 

  97. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482

    PubMed  CAS  Google Scholar 

  98. McFadden DC, Camps M, Boothroyd JC (2001) Resistance as a tool in the study of old and new drug targets in Toxoplasma. Drug Resist Updat 4:7984

    Google Scholar 

  99. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:514–516

    Google Scholar 

  100. McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19:1033–1040

    PubMed  CAS  Google Scholar 

  101. Moore RB et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    PubMed  CAS  Google Scholar 

  102. Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN, Sibley LD (2008) Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451:207–211

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Nagaraj VA, Arumugam R, Gopalakrishnan B, Jyothsna YS, Rangarajan PN, Padmanaban G (2008) Unique properties of Plasmodium falciparum porphobilinogen deaminase. J Biol Chem 283:437–444

    PubMed  CAS  Google Scholar 

  104. Nagaraj VA, Arumugam R, Chandra NR, Prasad D, Rangarajan PN, Padmanaban G (2009) Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. Int J Parasitol 39:559–568

    PubMed  CAS  Google Scholar 

  105. Nagaraj VA, Prasad D, Rangarajan PN, Padmanaban G (2009) Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol 168:109–112

    PubMed  CAS  Google Scholar 

  106. Nagaraj VA, Arumugam R, Prasad D, Rangarajan PN, Padmanaban G (2010) Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol 174:44–52

    PubMed  CAS  Google Scholar 

  107. Nagaraj VA, Prasad D, Arumugam R, Rangarajan PN, Padmanaban G (2010) Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol Int 59:121–127

    PubMed  CAS  Google Scholar 

  108. Nair SC, Striepen B (2011) What do human parasites do with a chloroplast anyway? PLoS Biol 9(8):e1001137

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Nair SC et al (2011) Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J Exp Med 208:1547–1559

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Obornik M, Janouskovec J, Chrudimsky T, Lukes J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39(1):1–12

    PubMed  CAS  Google Scholar 

  111. Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52:861–872

    PubMed  CAS  Google Scholar 

  112. Park S, Isaacson R, Kim HT, Silver PA, Wagner G (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13:995–1005

    PubMed  CAS  Google Scholar 

  113. Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3:1169–1175

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Ponts N, Saraf A, Chung DW, Harris A, Prudhomme J, Washburn MP, Florens L, Le Roch KG (2011) Unraveling the ubiquitome of the human malaria parasite. J Biol Chem 286(46):40320–40330

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Preiser P, Williamson DH, Wilson RJ (1995) tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res 23:43294336

    Google Scholar 

  116. Raghu Ram EV, Kumar A, Biswas S, Chaubey S, Siddiqi MI, Habib S (2007) Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. Mol Biochem Parasitol 154:30–39

    PubMed  CAS  Google Scholar 

  117. Ram EV, Naik R, Ganguli M, Habib S (2008) DNA organization by the apicoplast-targeted bacterial histone-like protein of Plasmodium falciparum. Nucleic Acids Res 36:5061–5073

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Ramakrishnan S et al (2012) Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 287:4957–4871

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Ramya TN, Mishra S, Karmodiya K, Surolia N, Surolia A (2007) Inhibitors of nonhousekeeping functions of the apicoplast defy delayed death in Plasmodium falciparum. Antimicrob Agents Chemother 51:307–316

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Reiff SB, Vaishnava S, Striepen B (2012) The HU protein is important for apicoplast genome maintenance and inheritance in Toxoplasma gondii. Eukaryot Cell 11:905–915

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Rock RC (1971) Incorporation of 14 C-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro. Comp Biochem Physiol B 40:893–906

    PubMed  CAS  Google Scholar 

  122. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    PubMed  CAS  Google Scholar 

  123. Rohrich RC et al (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 579:6433–6438

    PubMed  Google Scholar 

  124. Sato S, Clough B, Coates L, Wilson RJ (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:11725

    Google Scholar 

  125. Seeber F (2002) Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists. Int J Parasitol 32:1207–1217

    PubMed  CAS  Google Scholar 

  126. Seeber F, Soldati-Favre D (2010) Metabolic pathways in the apicoplast of apicomplexa. Int Rev Cell Mol Biol 281:161–228

    PubMed  CAS  Google Scholar 

  127. Seow F, Sato S, Janssen CS, Riehle MO, Mukhopadhyay A, Phillips RS, Wilson RJ, Barrett MP (2005) The plastidic DNA replication enzyme complex of Plasmodium falciparum. Mol Biochem Parasitol 141:145–153

    PubMed  CAS  Google Scholar 

  128. Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 7:e1002392

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Siddall ME (1992) Hohlzylinders. Parasitol Today 8:90–91

    PubMed  CAS  Google Scholar 

  130. Sidhu AB, Sun Q, Nkrumah LJ, Dunne MW, Sacchettini JC, Fidock DA (2007) In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem 282:2494–2504

    PubMed  CAS  Google Scholar 

  131. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    PubMed  CAS  Google Scholar 

  132. Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    PubMed  CAS  Google Scholar 

  133. Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier UG (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928

    PubMed  CAS  Google Scholar 

  134. Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Stanway RR, Mueller N, Zobiak B, Graewe S, Froehlke U, Zessin PJ, Aepfelbacher M, Heussler VT (2011) Organelle segregation into Plasmodium liver stage merozoites. Cell Microbiol 13:1768–1782

    PubMed  CAS  Google Scholar 

  136. Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    PubMed  CAS  Google Scholar 

  137. Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151:1423–1434

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Striepen B, Jordan CN, Reiff S, van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3:e78

    PubMed  PubMed Central  Google Scholar 

  139. Surolia N, Padmanaban G (1992) de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187:744–750

    PubMed  CAS  Google Scholar 

  140. Tawk L, Chicanne G, Dubremetz JF, Richard V, Payrastre B, Vial HJ, Roy C, Wengelnik K (2010) Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. Eukaryot Cell 9:1519–1530

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Tawk L et al (2011) Phosphatidylinositol 3-monophosphate is involved in Toxoplasma apicoplast biogenesis. PLoS Pathog 7(2):e1001286

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Thomsen-Zieger N, Schachtner J, Seeber F (2003) Apicomplexan parsites contain a single lipoic acid synthase located in the plastid. FEBS Lett 547:80–86

    PubMed  CAS  Google Scholar 

  143. Tomova C, Geerts WJ, Muller-Reichert T, Entzeroth R, Humbel BM (2006) New comprehension of the apicoplast of Sarcocystis by transmission electron tomography. Biol Cell 98:535–545

    PubMed  CAS  Google Scholar 

  144. Tomova C, Humbel BM, Geerts WJ, Entzeroth R, Holthuis JC, Verkleij AJ (2009) Membrane contact sites between apicoplast and ER in Toxoplasma gondii revealed by electron tomography. Traffic 10:1471–1480

    PubMed  CAS  Google Scholar 

  145. Tonhosolo R et al (2009) Carotenoid biosynthesis in intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 284:9974–9985

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Tonkin CJ, Roos DS, McFadden GI (2006) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 150:192–200

    PubMed  CAS  Google Scholar 

  147. Tonkin CJ, Kalanon M, McFadden GI (2008) Protein targeting to the malaria parasite plastid. Traffic 9:166–175

    PubMed  CAS  Google Scholar 

  148. Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61:614–630

    PubMed  CAS  Google Scholar 

  149. Vaishnava S, Striepen B (2006) The cell biology of secondary endosymbiosis-how parasites build, divide and segregate the apicoplast. Mol Microbiol 61:1380–1387

    PubMed  CAS  Google Scholar 

  150. Vaishnava S, Morrison DP, Gaji RY, Murray JM, Entzeroth R, Howe DK, Striepen B (2005) Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona. J Cell Sci 118:3397–3407

    PubMed  CAS  Google Scholar 

  151. van Dooren GG, Su V, D’Ombrain MC, McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277:23612–23619

    PubMed  CAS  Google Scholar 

  152. van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A 105:13574–13579

    PubMed  CAS  PubMed Central  Google Scholar 

  153. van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, Striepen B (2009) A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19:267–276

    PubMed  CAS  PubMed Central  Google Scholar 

  154. van Dooren GG, Kennedy AT, McFadden GI (2012) The use and abuse of heme in Apicomplexan parasites. Antioxid Redox Signal 17:634–656

    PubMed  CAS  Google Scholar 

  155. Varadharajan S, Dhanasekaran S, Bonday ZQ, Rangarajan PN, Padmanaban G (2002) Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. Biochem J 367:321–327

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11:506–520

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F (2009) Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers. PLoS Genet 5:e1000497

    PubMed  PubMed Central  Google Scholar 

  158. Vollmer M, Thomsen N, Wiek S, Seeber F (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP + reductase and ferredoxin. J Biol Chem 276:5483–5490

    PubMed  CAS  Google Scholar 

  159. Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  160. Waller RF et al (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95:12352–12357

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “A green algal apicoplast ancestor”. Science 301:49 (author reply 49)

    PubMed  Google Scholar 

  163. Walters KJ (2005) Ufd1 exhibits dual ubiquitin binding modes. Structure 13:943–947

    PubMed  CAS  Google Scholar 

  164. Weissig V, Vetro-Widenhouse TS, Rowe TC (1997) Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16:1483–1492

    PubMed  CAS  Google Scholar 

  165. Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJ (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243:249–252

    PubMed  CAS  Google Scholar 

  166. Wilson RJ, Williamson DH, Preiser P (1994) Malaria and other Apicomplexans: the “plant” connection. Infect Agents Dis 3:29–37

    PubMed  CAS  Google Scholar 

  167. Wilson RJ et al (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    PubMed  CAS  Google Scholar 

  168. Wrenger C, Muller S (2004) The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol Microbiol 53:103–113

    PubMed  CAS  Google Scholar 

  169. Wu B Heme biosynthetic pathway in Apicomplexan parasites. University of Pennsylvania. http://repositoryupennedu/dissertations/AAI3246256/2006

    Google Scholar 

  170. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    PubMed  CAS  Google Scholar 

  171. Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 9(8):e1001138

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99:15507–155012

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Yu M et al (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4:567–578

    PubMed  PubMed Central  Google Scholar 

  174. Yung S, Unnasch TR, Lang-Unnasch N (2001) Analysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis. Mol Biochem Parasitol 118:11–21

    PubMed  CAS  Google Scholar 

  175. Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:2640

    Google Scholar 

  176. Zhang B, Watts KM, Hodge D, Kemp LM, Hunstad DA, Hicks LM, Odom AR (2011) A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. BioChemistry 50:35707

    Google Scholar 

  177. Zhu G, Li Y, Cai X, Millership JJ, Marchewka MJ, Keithly JS (2004) Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol 134:127135

    Google Scholar 

  178. Zhu G, Shi X, Cai X (2010) The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters. BMC Biochem 11:46

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Striepen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheiner, L., Striepen, B. (2014). The Apicoplast: A Parasite’s Symbiont. In: Theg, S., Wollman, FA. (eds) Plastid Biology. Advances in Plant Biology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1136-3_8

Download citation

Publish with us

Policies and ethics