Skip to main content

Sepsis and Nutrition

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

Sepsis continues to be a common and serious problem. As the population ages, the incidence of sepsis in the United States continues to climb. It is estimated that in the United States, there are greater than 1.1 million cases of sepsis per year at an annual cost of $24.3 billion. Sepsis remains the leading cause of death in non-cardiac intensive care units (ICUs). In spite of extensive research, sepsis related mortality remains prohibitively high. In recent years, multiple professional organizations have developed evidence-based guidelines for the management of sepsis. The intent of such guidelines is to improve patient outcomes by aiding clinicians in the delivery of evidence-based care. Providing adequate nutritional support of critically ill patients, including those with sepsis, is a key factor in improving patient outcomes. The provision of early nutritional support via the enteral route can attenuate the metabolic response to stress, favorably modulate the host’s immune response, reduce the risk nosocomial infections, and reduce the risk organ dysfunctions associated with critical illness. In this chapter, we will review the current literature as it relates to the nutritional support of critically ill patients with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall MJ, Williams SN, Defrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011;62: 1–8.

    PubMed  Google Scholar 

  2. Lagu T, Rothberg MB, Shieh M-S, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754–61. doi:10.1097/CCM.0b013e318232db65.

    Article  PubMed  Google Scholar 

  3. Moore FA, Moore EE. The evolving rationale for early enteral nutrition based on paradigms of multiple organ failure: a personal journey. Nutr Clin Pract. 2009;24(3):297–304. doi:10.1177/0884533609336604.

    Article  PubMed  Google Scholar 

  4. Fry DE, Pearlstein L, Fulton RL, Polk Jr HC. Multiple system organ failure. The role of uncontrolled infection. Arch Surg. 1980;115(2):136–40.

    Article  CAS  PubMed  Google Scholar 

  5. Eiseman B, Sloan R, Hansbrough J, McIntosh R. Multiple organ failure: clinical and experimental. Am Surg. 1980;46(1):14–9.

    CAS  PubMed  Google Scholar 

  6. Polk Jr HC, Shields CL. Remote organ failure: a valid sign of occult intra-abdominal infection. Surgery. 1977;81(3):310–3.

    PubMed  Google Scholar 

  7. Faist E, Baue AE, Dittmer H, Heberer G. Multiple organ failure in polytrauma patients. J Trauma. 1983;23(9):775–87.

    Article  CAS  PubMed  Google Scholar 

  8. Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrère JS. Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg. 1985;120(10):1109–15.

    Article  CAS  PubMed  Google Scholar 

  9. Moore FA, Moore EE. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am. 1995;75(2):257–77.

    CAS  PubMed  Google Scholar 

  10. Balk RA, Bone RC. The septic syndrome. Definition and clinical implications. Crit Care Clin. 1989;5(1): 1–8.

    CAS  PubMed  Google Scholar 

  11. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–55.

    Article  CAS  PubMed  Google Scholar 

  12. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530–8.

    Article  PubMed  Google Scholar 

  13. Abbas AK, Lichtman AH. Cellular and molecular immunology. 5th ed. Amsterdam: Elsevier; 2005.

    Google Scholar 

  14. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bone RC. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med. 1996;125(8):680–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bone RC. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA. 1992;268(24):3452–5.

    Article  CAS  PubMed  Google Scholar 

  17. Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40(4):501–10; discussion 510–2.

    Article  CAS  PubMed  Google Scholar 

  18. Monneret G, Debard A-L, Venet F, Bohe J, Hequet O, Bienvenu J, Lepape A. Marked elevation of human circulating CD4+ CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31(7): 2068–71. doi:10.1097/01.CCM.0000069345.78884.0F.

    Article  PubMed  Google Scholar 

  19. Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest. 1991;88(5):1747–54. doi:10.1172/JCI115493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG, Karl IE. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit Care Med. 1997;25(8):1298–307.

    Article  CAS  PubMed  Google Scholar 

  21. De Waal MR, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991;174(4):915–24.

    Article  Google Scholar 

  22. Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204(6):1463–74. doi:10.1084/jem.20062602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Moldawer LL. Interleukin-1, TNF alpha and their naturally occurring antagonists in sepsis. Blood Purif. 1993;11(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  24. Muenzer JT, Davis CG, Chang K, Schmidt RE, Dunne WM, Coopersmith CM, Hotchkiss RS. Characterization and modulation of the immunosuppressive phase of sepsis. Infect Immun. 2010;78(4): 1582–92. doi:10.1128/IAI.01213-09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501. doi:10.1097/TA.0b013e318256e000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA. Post-injury multiple organ failure: the role of the gut. Shock. 2001;15(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  27. Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg. 2002;183(4):390–8.

    Article  PubMed  Google Scholar 

  28. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3): 305–15. doi:10.1177/0884533609335176.

    Article  PubMed  Google Scholar 

  29. Kazamias P, Kotzampassi K, Koufogiannis D, Eleftheriadis E. Influence of enteral nutrition-induced splanchnic hyperemia on the septic origin of splanchnic ischemia. World J Surg. 1998;22(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  30. Flynn Jr WJ, Gosche JR, Garrison RN. Intestinal blood flow is restored with glutamine or glucose suffusion after hemorrhage. J Surg Res. 1992;52(5): 499–504.

    Article  CAS  PubMed  Google Scholar 

  31. Grossie Jr VB, Weisbrodt NW, Moore FA, Moody F. Ischemia/reperfusion-induced disruption of rat small intestine transit is reversed by total enteral nutrition. Nutrition. 2001;17(11–12):939–43.

    Article  CAS  PubMed  Google Scholar 

  32. Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, Visser MR, Verhoef J, Gooszen HG, Akkermans LM. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg. 1998;228(2):188–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit Care Med. 2005;33(5):1125–35.

    Article  PubMed  Google Scholar 

  34. Kang W, Kudsk KA. Is there evidence that the gut contributes to mucosal immunity in humans? JPEN J Parenter Enteral Nutr. 2007;31(3):246–58.

    Article  CAS  PubMed  Google Scholar 

  35. Kang W, Gomez FE, Lan J, Sano Y, Ueno C, Kudsk KA. Parenteral nutrition impairs gut-associated lymphoid tissue and mucosal immunity by reducing lymphotoxin Beta receptor expression. Ann Surg. 2006;244(3):392–9. doi:10.1097/01.sla.0000234797.42935.46.

    PubMed Central  PubMed  Google Scholar 

  36. Alverdy J, Zaborina O, Wu L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care. 2005;8(2):205–9.

    Article  PubMed  Google Scholar 

  37. Ciesla DJ, Moore EE, Johnson JL, Burch JM, Cothren CC, Sauaia A. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch Surg. 2005;140(5):432–8. doi:10.1001/archsurg.140.5.432; discussion 438–40.

    Article  PubMed  Google Scholar 

  38. Minei JP, Cuschieri J, Sperry J, Moore EE, West MA, Harbrecht BG, et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit Care Med. 2012;40(4): 1129–35. doi:10.1097/CCM.0b013e3182376e9f.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cuschieri J, Johnson JL, Sperry J, West MA, Moore EE, Minei JP, et al. Benchmarking outcomes in the critically injured trauma patient and the effect of implementing standard operating procedures. Ann Surg. 2012;255(5):993–9. doi:10.1097/SLA.0b013e31824f1ebc.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gonzalez EA, Moore FA. Resuscitation beyond the abdominal compartment syndrome. Curr Opin Crit Care. 2010;16(6):570–4. doi:10.1097/MCC.0b013e3283409d16.

    Article  PubMed  Google Scholar 

  41. Moore LJ, Jones SL, Kreiner LA, McKinley B, Sucher JF, Todd SR, et al. Validation of a screening tool for the early identification of sepsis. J Trauma. 2009;66(6):1539–46. doi:10.1097/TA.0b013e3181a3ac4b; discussion 1546–7.

    Article  PubMed  Google Scholar 

  42. Sucher JF, Moore FA, Todd SR, Sailors RM, McKinley BA. Computerized clinical decision support: a technology to implement and validate evidence based guidelines. J Trauma. 2008;64(2):520–37.

    Article  PubMed  Google Scholar 

  43. McKinley BA, Moore LJ, Sucher JF, et al. Computer protocol facilitates evidence-based care of sepsis in the surgical intensive care unit. J Trauma. 2011;70(5):1153–66. doi:10.1097/TA.0b013e31821598e9; discussion 1166–7.

    Article  PubMed  Google Scholar 

  44. Moore LJ, McKinley BA, Turner KL, Todd SR, Sucher JF, Valdivia A, et al. The epidemiology of sepsis in general surgery patients. J Trauma. 2011;70(3):672–80. doi:10.1097/TA.0b013e31820e7803.

    Article  PubMed  Google Scholar 

  45. Moore LJ, Turner KL, Todd SR, McKinley B, Moore FA. Computerized clinical decision support improves survival in intra abdominal surgical sepsis. Am J Surg. 2010;200:839–43.

    Article  PubMed  Google Scholar 

  46. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, et al. The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med. 2010;38(2):367–74.

    Article  PubMed  Google Scholar 

  47. Nelson JE, Cox CE, Hope AA, Carson SS. Chronic critical illness. Am J Respir Crit Care Med. 2010;182(4): 446–54. doi:10.1164/rccm.201002-0210CI.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Nelson JE, Meier DE, Litke A, Natale DA, Siegel RE, Morrison RS. The symptom burden of chronic critical illness. Crit Care Med. 2004;32(7):1527–34.

    Article  PubMed  Google Scholar 

  49. Loss SH, Marchese CB, Boniatti MM, Wawrzeniak IC, Oliveira RP, Nunes LN, Victorino JA. Prediction of chronic critical illness in a general intensive care unit. Rev Assoc Med Bras. 2013;59(3):241–7. doi:10.1016/j.ramb.2012.12.002.

    Article  PubMed  Google Scholar 

  50. Hollander JM, Mechanick JI. Nutrition support and the chronic critical illness syndrome. Nutr Clin Pract. 2006;21(6):587–604.

    Article  PubMed  Google Scholar 

  51. Macintyre NR. Chronic critical illness: the growing challenge to health care. Respir Care. 2012;57(6): 1021–7.

    Article  PubMed  Google Scholar 

  52. Carson SS. Outcomes of prolonged mechanical ventilation. Curr Opin Crit Care. 2006;12(5):405–11.

    Article  PubMed  Google Scholar 

  53. McClave SA, Chang W-K. Feeding the hypotensive patient: does enteral feeding precipitate or protect against ischemic bowel? Nutr Clin Pract. 2003; 18(4):279–84.

    Article  PubMed  Google Scholar 

  54. Melis M, Fichera A, Ferguson MK. Bowel necrosis associated with early jejunal tube feeding: a complication of postoperative enteral nutrition. Arch Surg. 2006;141(7):701–4. doi:10.1001/archsurg.141.7.701.

    Article  PubMed  Google Scholar 

  55. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009; 33(3):277–316.

    Article  PubMed  Google Scholar 

  56. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73.

    Article  PubMed  Google Scholar 

  57. Langkamp-Henken B, Glezer JA, Kudsk KA. Immunologic structure and function of the gastrointestinal tract. Nutr Clin Pract. 1992;7(3):100–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus “nil by mouth” after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ. 2001;323(7316):773–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Beier-Holgersen R, Boesby S. Influence of postoperative enteral nutrition on postsurgical infections. Gut. 1996;39(6):833–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lien HC, Chang CS, Chen GH. Can percutaneous endoscopic jejunostomy prevent gastroesophageal reflux in patients with preexisting esophagitis? Am J Gastroenterol. 2000;95(12):3439–43. doi:10.1111/j.1572-0241.2000.03281.x.

    Article  CAS  PubMed  Google Scholar 

  61. Heyland DK, Drover JW, Dhaliwal R, Greenwood J. Optimizing the benefits and minimizing the risks of enteral nutrition in the critically ill: role of small bowel feeding. JPEN J Parenter Enteral Nutr. 2002;26(6 Suppl):S51–5; discussion S56–7.

    Article  PubMed  Google Scholar 

  62. Moore EE, Jones TN. Benefits of immediate jejunostomy feeding after major abdominal trauma—a prospective, randomized study. J Trauma. 1986;26(10): 874–81.

    Article  CAS  PubMed  Google Scholar 

  63. Moore FA, Moore EE, Kudsk KA, Brown RO, Bower RH, Koruda MJ, et al. Clinical benefits of an immune-enhancing diet for early postinjury enteral feeding. J Trauma. 1994;37(4):607–15.

    Article  CAS  PubMed  Google Scholar 

  64. Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM. TEN versus TPN following major abdominal trauma—reduced septic morbidity. J Trauma. 1989;29(7):916–22; discussion 922–3.

    Article  CAS  PubMed  Google Scholar 

  65. Kudsk KA, Croce MA, Fabian TC, Minard G, Tolley EA, Poret HA, et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg. 1992;215(5):503–11. discussion 511–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Taylor SJ, Fettes SB, Jewkes C, Nelson RJ. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med. 1999;27(11): 2525–31.

    Article  CAS  PubMed  Google Scholar 

  67. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17. doi:10.1056/NEJMoa1102662.

    Article  CAS  PubMed  Google Scholar 

  68. Heyland DK, Montalvo M, MacDonald S, Keefe L, Su XY, Drover JW. Total parenteral nutrition in the surgical patient: a meta-analysis. Can J Surg. 2001; 44(2):102–11.

    CAS  PubMed  Google Scholar 

  69. Luiking YC, Poeze M, Ramsay G, Deutz NEP. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52. doi:10.3945/ajcn.2007.25765.

    Article  CAS  PubMed  Google Scholar 

  70. Luiking YC, Poeze M, Ramsay G, Deutz NEP. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr. 2005;29(1 Suppl):S70–4.

    Article  CAS  PubMed  Google Scholar 

  71. Luiking YC, Poeze M, Dejong CH, Ramsay G, Deutz NE. Sepsis: an arginine deficiency state? Crit Care Med. 2004;32(10):2135–45.

    Article  CAS  PubMed  Google Scholar 

  72. Luiking YC, Deutz NEP. Exogenous arginine in sepsis. Crit Care Med. 2007;35(9 Suppl):S557–63.

    Article  CAS  PubMed  Google Scholar 

  73. Freund H, Atamian S, Holroyde J, Fischer JE. Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg. 1979;190(5):571–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Stechmiller JK, Childress B, Porter T. Arginine immunonutrition in critically ill patients: a clinical dilemma. Am J Crit Care. 2004;13(1):17–23.

    PubMed  Google Scholar 

  75. Suchner U, Heyland DK, Peter K. Immune-modulatory actions of arginine in the critically ill. Br J Nutr. 2002;87 Suppl 1:S121–32.

    Article  CAS  PubMed  Google Scholar 

  76. Galbán C, Montejo JC, Mesejo A, Marco P, Celaya S, Sánchez-Segura JM, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 2000;28(3):643–8.

    Article  PubMed  Google Scholar 

  77. Popovic PJ, Zeh 3rd HJ, Ochoa JB. Arginine and immunity. J Nutr. 2007;137(6 Suppl 2):1681S–6S.

    CAS  PubMed  Google Scholar 

  78. Zhu X, Herrera G, Ochoa JB. Immunosuppression and infection after major surgery: a nutritional deficiency. Crit Care Clin. 2010;26(3):491–500. doi:10.1016/j.ccc.2010.04.004, ix.

    Article  PubMed  Google Scholar 

  79. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med. 2011;17(3–4):281–92. doi:10.2119/molmed.2010.00178.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Oehler R, Pusch E, Dungel P, Zellner M, Eliasen MM, Brabec M, Roth E. Glutamine depletion impairs cellular stress response in human leucocytes. Br J Nutr. 2002;87 Suppl 1:S17–21.

    Article  CAS  PubMed  Google Scholar 

  81. Roth E, Oehler R. Hypothesis: muscular glutamine deficiency in sepsis—a necessary step for a hibernation-like state? Nutrition. 2010;26(5):571–4. doi:10.1016/j.nut.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  82. Cavalcante AAM, Campelo MWS, de Vasconcelos MPP, Ferreira CM, Guimarães SB, Garcia JH, de Vasconcelos PR. Enteral nutrition supplemented with L-glutamine in patients with systemic inflammatory response syndrome due to pulmonary infection. Nutrition. 2012;28(4):397–402. doi:10.1016/j.nut.2011.07.011.

    Article  CAS  PubMed  Google Scholar 

  83. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, et al. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med. 2003; 31(10):2444–9. doi:10.1097/01.CCM.0000084848.63691.1E.

    Article  CAS  PubMed  Google Scholar 

  84. Garrel D. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns. JPEN J Parenter Enteral Nutr. 2004;28(2):123; author reply 123.

    Article  PubMed  Google Scholar 

  85. Jones C, Palmer TE, Griffiths RD. Randomized clinical outcome study of critically ill patients given glutamine-supplemented enteral nutrition. Nutrition. 1999;15(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  86. Estívariz CF, Griffith DP, Luo M, Szeszycki EE, Bazargan N, Dave N, et al. Efficacy of parenteral nutrition supplemented with glutamine dipeptide to decrease hospital infections in critically ill surgical patients. JPEN J Parenter Enteral Nutr. 2008; 32(4):389–402. doi:10.1177/0148607108317880.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97. doi:10.1056/NEJMoa1212722.

    Article  CAS  PubMed  Google Scholar 

  88. Heyland DK, Dhaliwal R. Role of glutamine supplementation in critical illness given the results of the REDOXS study. JPEN J Parenter Enteral Nutr. 2013;37(4):442–3. doi:10.1177/0148607113488421.

    Article  PubMed  Google Scholar 

  89. Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30(9):2022–9. doi:10.1097/01.CCM.0000026106.58241.95.

    Article  CAS  PubMed  Google Scholar 

  90. Alexander JW. Immunonutrition: the role of omega-3 fatty acids. Nutrition. 1998;14(7–8):627–33.

    Article  CAS  PubMed  Google Scholar 

  91. Mizock BA. Immunonutrition and critical illness: an update. Nutrition. 2010;26(7–8):701–7. doi:10.1016/j.nut.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  92. Cohen J, Chin wD. Nutrition and sepsis. World Rev Nutr Diet. 2013;105:116–25. doi:10.1159/000341280.

    Article  PubMed  Google Scholar 

  93. Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med. 2008;34(11):1980–90. doi:10.1007/s00134-008-1213-6.

    Article  PubMed  Google Scholar 

  94. Pontes-Arruda A, Martins LF, de Lima SM, Isola AM, Toledo D, Rezende E, et al. Enteral nutrition with eicosapentaenoic acid, γ-linolenic acid and antioxidants in the early treatment of sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: the INTERSEPT study. Crit Care. 2011;15(3):R144. doi:10.1186/cc10267.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;31(3):327–37. doi:10.1007/s00134-004-2522-z.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Moore MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, L.J., Moore, F.A. (2014). Sepsis and Nutrition. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1121-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1121-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1120-2

  • Online ISBN: 978-1-4939-1121-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics