Skip to main content

Umbilical Cord Blood for Cardiovascular Cell Therapy

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain major causes of morbidity and mortality with substantial economic cost worldwide. Unlike other vertebrate animals, it was postulated that heart cells in adult mammals did not have self-regenerative potential. However, the basic foundations of cardiac regeneration changed radically in the 1990s owing to pioneering studies with significant biological and clinical implications. Since then, most efforts have been directed to repair myocardial tissue and the supportive vascular system using cells with regenerative potential. In this context, to highlight the great potential of UCB in human regenerative medicine, we first provide a broad overview of current advances, pitfalls, and future goals, focusing on cardiac regeneration. We then show UCB, in the context of other existing potential cell sources, as a rich reservoir of both hematopoietic and nonhematopoietic cells with regenerative capacity. We finally recount ongoing research using UCB-derived cells, focused on cardiovascular cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleland JG, Khand A, Clark A. The heart failure epidemic: exactly how big is it? Eur Heart J. 2001;22:623–6.

    CAS  PubMed  Google Scholar 

  2. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  3. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.

    CAS  PubMed  Google Scholar 

  4. Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res. 1998;83:1–14.

    CAS  PubMed  Google Scholar 

  5. Beltrami A, Urbanek K, Kajstura J, Jan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.

    CAS  PubMed  Google Scholar 

  6. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415:240–3.

    CAS  PubMed  Google Scholar 

  7. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346:5–15.

    PubMed  Google Scholar 

  8. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res. 2002;90:634–40.

    CAS  PubMed  Google Scholar 

  9. Bayes-Genis A, Salido M, Solé Ristol F, Puig M, Brossa V, Campreciós M, et al. Host cell-derived cardiomyocytes in sex-mismatch cardiac allografts. Cardiovasc Res. 2002;56:404–10.

    CAS  PubMed  Google Scholar 

  10. Bayes-Genis A, Muñiz-Diaz E, Catasus L, Arilla M, Rodriguez C, Sierra J, et al. Cardiac chimerism in recipients of peripheral-blood and bone marrow stem cells. Eur J Heart Fail. 2004;6:399–402.

    PubMed  Google Scholar 

  11. Bayes-Genis A, Bellosillo B, de la Calle O, Salido M, Roura S, Ristol FS, et al. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant. 2005;24:2179–83.

    PubMed  Google Scholar 

  12. Bayes-Genis A, Roura S, Prat-Vidal C, Farré J, Soler-Botija C, de Luna AB, et al. Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nat Clin Pract Cardiovasc Med. 2007;4:S40–5.

    CAS  PubMed  Google Scholar 

  13. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002;530:239–43.

    CAS  PubMed  Google Scholar 

  14. Parmacek MS. Cardiac stem cells and progenitors: developmental biology and therapeutic challenges. Trans Am Clin Climatol Assoc. 2006;117:239–56.

    PubMed Central  PubMed  Google Scholar 

  15. Shah VK, Shalia KK. Stem cell therapy in acute myocardial infarction: a pot of gold or Pandora’s box. Stem Cells Int. 2011;2011:536758.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Nagai T, Komuro I. Gene and cytokine therapy for heart failure: molecular mechanisms in the improvement of cardiac function. Am J Physiol Heart Circ Physiol. 2012;303:H501–12.

    CAS  PubMed  Google Scholar 

  17. Said SS, Pickering JG, Mequanint K. Advances in growth factor delivery for therapeutic angiogenesis. J Vasc Res. 2013;50:35–51.

    CAS  PubMed  Google Scholar 

  18. Soler-Botija C, Bagó JR, Bayes-Genis A. A bird’s-eye view of cell therapy and tissue engineering for cardiac regeneration. Ann N Y Acad Sci. 2012;1254:57–65.

    CAS  PubMed  Google Scholar 

  19. Roura S, Pujal JM, Bayes-Genis A. Umbilical cord blood for cardiovascular cell therapy: from promise to fact. Ann N Y Acad Sci. 2012;1254:66–70.

    CAS  PubMed  Google Scholar 

  20. Strauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol. 2011;58:1095–104.

    PubMed  Google Scholar 

  21. Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res. 2008;103:107–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lionetti V, Ventura C. Regenerative medicine approach to repair the failing heart. Vascul Pharmacol. 2013;58:159–63.

    CAS  PubMed  Google Scholar 

  23. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Heng BC, Haider HK, Sim EK, Cao T, Tong GQ, Ng SC. Comments about possible use of human embryonic stem cell-derived cardiomyocytes to direct autologous adult stem cells into the cardiomyogenic lineage. Acta Cardiol. 2005;60:7–12.

    PubMed  Google Scholar 

  25. Cao F, van der Bogt KE, Sadrzadeh A, Xie X, Sheikh AY, Wang H, et al. Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev. 2007;16:883–91.

    CAS  PubMed  Google Scholar 

  26. Caplice NM, Deb A. Myocardial-cell replacement: the science, the clinic and the future. Nat Clin Pract Cardiovasc Med. 2004;1:90–5.

    PubMed  Google Scholar 

  27. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest. 2005;115:572–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Menasche P. Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives. Thromb Haemost. 2005;94:697–701.

    PubMed  Google Scholar 

  29. Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng. 2011;13:245–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Senegaglia AC, Barboza LA, Dallagiovanna B, Aita CA, Hansen P, Rebelatto CL, et al. Are purified or expanded cord blood-derived CD133+ cells better at improving cardiac function? Exp Biol Med (Maywood). 2010;235:119–29.

    CAS  Google Scholar 

  31. Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, Harada M, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ J. 2001;65:845–7.

    CAS  PubMed  Google Scholar 

  32. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.

    PubMed  Google Scholar 

  33. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.

    PubMed  Google Scholar 

  34. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690–9.

    PubMed  Google Scholar 

  35. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 2003;108:2212–8.

    CAS  PubMed  Google Scholar 

  36. Fernández-Avilés F, San Román JA, García-Frade J, Fernández ME, Peñarrubia MJ, de la Fuente L, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004;95:742–8.

    PubMed  Google Scholar 

  37. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;3619351:45–6.

    Google Scholar 

  38. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–9.

    PubMed  Google Scholar 

  39. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    PubMed  Google Scholar 

  40. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    CAS  PubMed  Google Scholar 

  41. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. REPAIR-AMI Investigators: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    CAS  PubMed  Google Scholar 

  42. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. REPAIR-AMI Investigators: Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.

    PubMed  Google Scholar 

  43. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.

    PubMed  Google Scholar 

  44. Huikuri HV, Kervinen K, Niemelä M, Ylitalo K, Säily M, Koistinen P, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.

    PubMed  Google Scholar 

  45. Miettinen JA, Ylitalo K, Hedberg P, Jokelainen J, Kervinen K, Niemelä M, et al. Determinants of functional recovery after myocardial infarction of patients treated with bone marrow-derived stem cells after thrombolytic therapy. Heart. 2010;96:362–7.

    PubMed  Google Scholar 

  46. Miettinen JA, Salonen RJ, Niemelä M, Kervinen K, Säily M, Koistinen P, et al. Effects of intracoronary infusion of bone marrow-derived stem cells on pulmonary artery pressure and diastolic function after myocardial infarction. Int J Cardiol. 2010;145:631–3.

    PubMed  Google Scholar 

  47. Charwat S, Lang I, Dettke M, Graf S, Nyolczas N, Hemetsberger R, et al. Effect of intramyocardial delivery of autologous bone marrow mononuclear stem cells on the regional myocardial perfusion. NOGA-guided subanalysis of the MYSTAR prospective randomised study. Thromb Haemost. 2010;103:564–71.

    CAS  PubMed  Google Scholar 

  48. Hu S, Liu S, Zheng Z, Yuan X, Li L, Lu M, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2011;57:2409–15.

    PubMed  Google Scholar 

  49. Roncalli J, Mouquet F, Piot C, Trochu JN, Le Corvoisier P, Neuder Y, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32:1748–57.

    PubMed Central  PubMed  Google Scholar 

  50. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307:1717–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Cardiac tissue engineering and the bioartificial heart. Rev Esp Cardiol (Engl Ed). 2013;66(5):391–9. doi:10.1016/j.recesp.2012.11.013.

    Google Scholar 

  54. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    CAS  PubMed  Google Scholar 

  55. Shi Q, Raffi S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. Evidence of circulating bone-marrow-derived endothelial cells. Blood. 1998;92:362–7.

    CAS  PubMed  Google Scholar 

  56. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103:2885–90.

    CAS  PubMed  Google Scholar 

  57. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24:288–93.

    CAS  PubMed  Google Scholar 

  58. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008;197:496–503.

    CAS  PubMed  Google Scholar 

  59. Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13:87–102.

    PubMed  Google Scholar 

  60. Pearson JD. Endothelial progenitor cells—an evolving story. Microvasc Res. 2010;79:162–8.

    CAS  PubMed  Google Scholar 

  61. Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50:266–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Xiong Q, Hill KL, Li Q, Suntharalingam P, Mansoor A, Mansoor A, Wang X, et al. A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells. 2011;29:367–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–84.

    PubMed  Google Scholar 

  64. Schmeckpeper J, Ikeda Y, Kumar AH, Metharom P, Russell SJ, Caplice NM. Lentiviral tracking of vascular differentiation in bone marrow progenitor cells. Differentiation. 2009;78:169–76.

    CAS  PubMed  Google Scholar 

  65. Kumar AH, Caplice NM. Clinical potential of adult vascular progenitor cells. Arterioscler Thromb Vasc Biol. 2010;30:1080–7.

    CAS  PubMed  Google Scholar 

  66. Heydarkhan-Hagvall S, Schenke-Layland K, Yang JQ, Heydarkhan S, Xu Y, Zuk PA, et al. Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs. 2008;187:263–74.

    PubMed  Google Scholar 

  67. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Müller-Hilke B, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. 2005;66:45–54.

    CAS  PubMed  Google Scholar 

  68. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem. 2009;24:307–16.

    CAS  PubMed  Google Scholar 

  69. Roura S, Bagó JR, Soler-Botija C, Pujal JM, Gálvez-Montón C, Prat-Vidal C, et al. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo. PLoS One. 2012;7:e49447.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gluckman E. Milestones in umbilical cord blood transplantation. Blood Rev. 2011;25:255–9.

    CAS  PubMed  Google Scholar 

  71. Liao Y, Geyer MB, Yang AJ, Cairo MS. Cord blood transplantation and stem cell regenerative potential. Exp Hematol. 2011;39:393–412.

    PubMed  Google Scholar 

  72. Jordens CF, O'Connor MA, Kerridge IH, Stewart C, Cameron A, Keown D, et al. Religious perspectives on umbilical cord blood banking. J Law Med. 2012;19:497–511.

    PubMed  Google Scholar 

  73. Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells. 1998;16:153–65.

    CAS  PubMed  Google Scholar 

  74. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86:3828–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8.

    CAS  PubMed  Google Scholar 

  76. Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43:357–61.

    CAS  PubMed  Google Scholar 

  77. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood. 1987;69:953–6.

    CAS  PubMed  Google Scholar 

  79. Lavergne M, Vanneaux V, Delmau C, Gluckman E, Rodde-Astier I, Larghero J, et al. Cord blood-circulating endothelial progenitors for treatment of vascular diseases. Cell Prolif. 2011;44:44–7.

    PubMed  Google Scholar 

  80. Tomonari A, Tojo A, Takahashi T, Iseki T, Ooi J, Takahashi S, et al. Resolution of Behçet’s disease after HLA-mismatched unrelated cord blood transplantation for myelodysplastic syndrome. Ann Hematol. 2004;83:464–6.

    PubMed  Google Scholar 

  81. Ichim TE, Solano F, Glenn E, Morales F, Smith L, Zabrecky G, et al. Stem cell therapy for autism. J Transl Med. 2007;5:30.

    PubMed Central  PubMed  Google Scholar 

  82. Hu CH, Wu GF, Wang XQ, Yang YH, Du ZM, He XH, et al. Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction. Chin Med J (Engl). 2006;119:1499–506.

    CAS  Google Scholar 

  83. Leor J, Guetta E, Feinberg MS, Galski H, Bar I, Holbova R, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infarcted myocardium. Stem Cells. 2006;24:772–80.

    PubMed  Google Scholar 

  84. Newcomb JD, Ajmo Jr CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15:213–23.

    PubMed  Google Scholar 

  85. Ichim TE, Solano F, Brenes R, Glenn E, Chang J, Chan K, et al. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod Biomed Online. 2008;16:898–905.

    PubMed  Google Scholar 

  86. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.

    CAS  PubMed  Google Scholar 

  87. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26:300–11.

    PubMed  Google Scholar 

  89. Hill RP, Gledhill K, Gardner A, Higgins CA, Crawford H, Lawrence C, et al. Generation and characterization of multipotent stem cells from established dermal cultures. PLoS One. 2012;7:e50742.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Corrao S, La Rocca G, Lo Iacono M, Zummo G, Gerbino A, Farina F, et al. New frontiers in regenerative medicine in cardiology: the potential of Wharton’s Jelly mesenchymal stem cells. Curr Stem Cell Res Ther. 2013;8:39–45.

    CAS  PubMed  Google Scholar 

  91. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    CAS  PubMed  Google Scholar 

  92. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123–35.

    PubMed Central  PubMed  Google Scholar 

  93. Manca MF, Zwart I, Beo J, Palasingham R, Jen LS, Navarrete R, et al. Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood. Cytotherapy. 2008;10:54–68.

    CAS  PubMed  Google Scholar 

  94. Prat-Vidal C, Roura S, Farré J, Gálvez C, Llach A, Molina CE, et al. Umbilical cord blood-derived stem cells spontaneously express cardiomyogenic traits. Transplant Proc. 2007;39:2434–7.

    CAS  PubMed  Google Scholar 

  95. Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant. 2003;12:555–61.

    PubMed  Google Scholar 

  96. Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2006;340:639–47.

    CAS  PubMed  Google Scholar 

  97. Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007;25(8):2017–24.

    CAS  PubMed  Google Scholar 

  98. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95:137–48.

    CAS  PubMed  Google Scholar 

  99. Roura S, Farré J, Hove-Madsen L, Prat-Vidal C, Soler-Botija C, Gálvez-Montón C, et al. Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Res Cardiol. 2010;105:419–30.

    PubMed  Google Scholar 

  100. Roura S, Farré J, Soler-Botija C, Llach A, Hove-Madsen L, Cairó JJ, et al. Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. Eur J Heart Fail. 2006;8:555–63.

    CAS  PubMed  Google Scholar 

  101. Nakamura T, Sano M, Songyang Z, Schneider MD. A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A. 2003;100:5834–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Bartunek J, Croissant JD, Wijns W, Gofflot S, de Lavareille A, Vanderheyden M, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol. 2007;292:H1095–104.

    CAS  PubMed  Google Scholar 

  103. Koyanagi M, Haendeler J, Badorff C, Brandes RP, Hoffmann J, Pandur P, et al. Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J Biol Chem. 2005;280:16838–42.

    CAS  PubMed  Google Scholar 

  104. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107(7):1024–32.

    PubMed  Google Scholar 

  105. Bayes-Genis A, Soler-Botija C, Farré J, Sepúlveda P, Raya A, Roura S, et al. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. J Mol Cell Cardiol. 2010;49:771–80.

    CAS  PubMed  Google Scholar 

  106. Park J, Setter V, Wixler V, Schneider H. Umbilical cord blood stem cells: induction of differentiation into mesenchymal lineages by cell-cell contacts with various mesenchymal cells. Tissue Eng Part A. 2009;15:397–406.

    CAS  PubMed  Google Scholar 

  107. Cui YX, Kafienah W, Suleiman MS, Ascione R. A new methodological sequence to expand and transdifferentiate human umbilical cord blood derived CD133(+) cells into a cardiomyocyte-like phenotype. Stem Cell Rev. 2013;9(3):350–9.

    PubMed  Google Scholar 

  108. Yamada Y, Yokoyama S, Fukuda N, Kidoya H, Huang XY, Naitoh H, et al. A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem Biophys Res Commun. 2007;353:182–8.

    CAS  PubMed  Google Scholar 

  109. Gaebel R, Furlani D, Sorg H, Polchow B, Frank J, Bieback K, et al. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One. 2011;6:e15652.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Lee EJ, Choi EK, Kang SK, Kim GH, Park JY, Kang HJ, et al. N-cadherin determines individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells in a rat model of myocardial infarction. Mol Ther. 2012;20:155–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Roura S, Gálvez-Montón C, Bayes-Genis A. Bioluminescence imaging: a shining future for cardiac regeneration. J Cell Mol Med. 2013. doi:10.1111/jcmm.12018.

    PubMed  Google Scholar 

  112. Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011;32:S316–9.

    CAS  PubMed  Google Scholar 

  113. Lee WY, Wei HJ, Wang JJ, Lin KJ, Lin WW, Chen DY, Huang CC, Lee TY, Ma HY, Hwang SM, Chang Y, Sung HW. Vascularization and restoration of heart function in rat myocardial infarction using transplantation of human cbMSC/HUVEC core-shell bodies. Biomaterials. 2012;33:2127–36.

    CAS  PubMed  Google Scholar 

  114. Schmidt D, Mol A, Odermatt B, Neuenschwander S, Breymann C, Gössi M, Genoni M, Zund G, Hoerstrup SP. Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. 2006;12:3223–32.

    CAS  PubMed  Google Scholar 

  115. Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, Turina M, Hoerstrup SP. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg. 2004;78:2094–8.

    PubMed  Google Scholar 

  116. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492:376–81.

    CAS  PubMed  Google Scholar 

  118. Boström P, Frisén J. New cells in old hearts. N Engl J Med. 2013;368:1358–60.

    PubMed  Google Scholar 

  119. Friedrich EB, Böhm M. Human umbilical cord blood cells and myocardial infarction: novel ways to treat an old problem. Cardiovasc Res. 2005;66:4–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Bayés-Genís M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrer, S.R., Gálvez-Montón, C., Bayés-Genís, A. (2014). Umbilical Cord Blood for Cardiovascular Cell Therapy. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_26

Download citation

Publish with us

Policies and ethics