Skip to main content

An Introduction to the Steroidogenic Acute Regulatory Protein (StAR)-Related Lipid Transfer Domain Protein Family

  • Chapter
  • First Online:
Cholesterol Transporters of the START Domain Protein Family in Health and Disease

Abstract

The steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain superfamily comprises a diverse group of proteins that bind hydrophobic lipids. The distinguishing feature shared by all members of this family is an α/β helix-grip fold structure containing a long hydrophobic pocket for ligand binding. The mammalian START domain protein family is grouped into 6 subfamilies that bind either cholesterol and oxysterols (STARD1/D3 and STARD4 subfamilies) or phospholipids and sphingolipids (STARD2/D11 subfamily), or have putative functions in Rho-GTPase signaling (STARD8/12/13 subfamily), thioesterase activity (STARD14/15 subfamily), or kinesin motor activity (STARD9). StAR (STARD1) is the namesake of the START domain protein family and has a well-established function in cholesterol transport in the adrenal and gonads for steroid hormone biosynthesis. Some of the mammalian START family members, e.g., STARD1, STARD11, and STARD2 are well characterized for their roles in cholesterol, ceramide, and phosphatidylcholine transfer, respectively, while much remains to be learned about the remaining family members. The purpose of this book is to present a compendium of the history of the discovery and the characterization of the mammalian START proteins, encompassing the seminal work over the past 50 years that has led to our current understanding of these lipid transport proteins. The chapters in this book focus on members of the STARD1/3 and STARD4 subfamilies, which have established roles involved in cholesterol and sterol trafficking. Each chapter provides a personal perspective of the discovery-to-publication journey for work on a START domain family member by authors whose work was instrumental in their discovery and characterization. This introductory chapter provides a brief overview and background on all members of the mammalian START protein family to provide a complete picture of this family of lipid transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NCBI cl14643: SRPBCC is the START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC superfamily. Rho_alpha_C, the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases; PIPT, phosphatidylinositol transfer proteins; Bet v 1, the major pollen allergen of white birch, Betula verrucosa; CoxG, carbon monoxide dehydrogenase subunit G (gram-negative bacteria); CalC, and related proteins.

Abbreviations

ACAT :

acyl-CoA:cholesterol acyl transferase

ACOT :

acyl-CoA thioesterase

BFIT2 :

brown fat-inducible thioesterase-2

CDCA :

chenodeoxycholic acid

CERT :

ceramide transfer protein

COL4A3BP :

collagen type IV alpha 3 binding protein

DLC :

deleted in liver cancer

FFAT :

peptide EFFDAxE

FHA :

forkhead-associated phosphopeptide binding domain

MENTAL :

MLN64-N terminal domain

MLN64 :

metastatic axillary lymph node 64 kDa protein

NPC :

Niemann –Pick type C disease

PC :

phosphatidylcholine

PCTP :

phosphatidylcholine transfer protein

PH :

pleckstrin homology domain

SAM :

sterile alpha domain

SREBP-2 :

sterol regulatory element binding protein-2

StAR :

steroidogenic acute regulatory protein

START :

StAR-related lipid transfer domain

References

  1. Ponting CP, Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends Biochem Sci. 1999;24:130–2.

    Article  CAS  PubMed  Google Scholar 

  2. Iyer LM, Koonin EV, Aravind L. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins. 2001;43:134–44.

    Article  CAS  PubMed  Google Scholar 

  3. Baker BY, Yaworsky DC, Miller WL. A pH-dependent molten globule transition is required for activity of the steroidogenic acute regulatory protein, StAR. J Biol Chem. 2005;280:41753–60.

    Article  CAS  PubMed  Google Scholar 

  4. Bose HS, Whittal RM, Ran Y, Bose M, Baker BY, Miller WL. StAR-like activity and molten globule behavior of StARD6, a male germ-line protein. Biochemistry. 2008;47:2277–88.

    Article  CAS  PubMed  Google Scholar 

  5. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant S. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009;37:D205–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schrick K, Nguyen D, Karlowski WM, Mayer KF. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol. 2004;5:R41.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci U S A. 2002;99:6943–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Romanowski MJ, Soccio RE, Breslow JL, Burley S. Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci U S A. 2002;99:6949–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000;7:408–14.

    Article  CAS  PubMed  Google Scholar 

  10. Kudo N, Kumagai K, Matsubara R, Kobayashi S, Hanada K, Wakatsuki S, Kato R. Crystal structures of the CERT START domain with inhibitors provide insights into the mechanism of ceramide transfer. J Mol Biol. 2010;396:245–51.

    Article  CAS  PubMed  Google Scholar 

  11. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K, Kato R. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci U S A. 2008;105:488–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Roderick SL, Chan WW, Agate DS, Olsen LR, Vetting MW, Rajashankar KR, Cohen DE. Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nat Struct Biol. 2002;9:507–11.

    CAS  PubMed  Google Scholar 

  13. Thorsell AG, Lee WH, Persson C, Siponen MI, Nilsson M, Busam RD, Kotenyova T, Schuler H, Lehtio L. Comparative structural analysis of lipid binding START domains. PLoS One. 2011;6:e19521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Clark BJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol. 2012;212:257–75.

    Article  CAS  PubMed  Google Scholar 

  15. Alpy F, Tomasetto C. START ships lipids across interorganelle space. Biochimie. 2013;96:85–95.

    Article  PubMed  Google Scholar 

  16. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–22.

    CAS  PubMed  Google Scholar 

  17. Moog-Lutz C, Tomasetto C, Regnier CH, Wendling C, Lutz Y, Muller D, Chenard MP, Basset P, Rio MC. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int J Cancer. 1997;71:183–91.

    Article  CAS  PubMed  Google Scholar 

  18. Tomasetto C, Regnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P, Rio MC. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11–q21.3 region of chromosome 17. Genomics. 1995;28:367–76.

    Article  CAS  PubMed  Google Scholar 

  19. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Ann Rev Physiol. 2001;63:193–213.

    Article  CAS  Google Scholar 

  20. Sugawara T, Lin D, Holt JA, Martin KO, Javitt NB, Miller WL, Strauss JF, 3rd. Structure of the human steroidogenic acute regulatory protein (StAR) gene: StAR stimulates mitochondrial cholesterol 27-hydroxylase activity. Biochemistry. 1995;34:12506–12.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem. 2011;116:789–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alpy F, Tomasetto C. MLN64 and MENTHO, two mediators of endosomal cholesterol transport. Biochem Soc Trans. 2006;34:343–5.

    Article  CAS  PubMed  Google Scholar 

  23. Alpy F, Latchumanan VK, Kedinger V, Janoshazi A, Thiele C, Wendling C, Rio MC, Tomasetto C. Functional characterization of the MENTAL domain. J Biol Chem. 2005;280:17945–52.

    Article  CAS  PubMed  Google Scholar 

  24. Charman M, Kennedy BE, Osborne N, Karten B. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res. 2009;51:1023–34.

    Article  PubMed  Google Scholar 

  25. Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C. STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER. J Cell Sci. 2013;126:5500–12.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y-C, Meier RK, Zheng S, Khundmiri SJ, Tseng MT, Lederer ED, Epstein PN, Clark BJ. Steroidogenic Acute Regulatory (StAR)-Related Lipid Transfer Domain Protein 5 (STARD5) localization and regulation in renal tubules. Am J Physiol Renal Physiol. 2009;297:F380–8. doi:90433.92008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mesmin B, Pipalia NH, Lund FW, Ramlall TF, Sokolov A, Eliezer D, Maxfield FR. STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell. 2011;22:4004–15. doi:10.1091/mbc.E11-04-0372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rodriguez-Agudo D, Calderon-Dominguez M, Ren S, Marques D, Redford K, Medina-Torres MA, Hylemon P, Gil G, Pandak WM. Subcellular localization and regulation of StarD4 protein in macrophages and fibroblasts. Biochim Biophys Acta. 2011;1811:597–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rodriguez-Agudo D, Ren S, Wong E, Marques D, Redford K, Gil G, Hylemon P, Pandak WM. Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J Lipid Res. 2008;49:1409–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Letourneau D, Lorin A, Lefebvre A, Frappier V, Gaudreault F, Najmanovich R, Lavigne P, LeHoux JG. StAR-related lipid transfer domain protein 5 binds primary bile acids. J Lipid Res. 2012;53:2677–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rodriguez-Agudo D, Ren S, Hylemon PB, Redford K, Natarajan R, Del Castillo A, Gil G, Pandak WM. Human StarD5, a cytosolic StAR-related lipid binding protein. J Lipid Res. 2005;46:1615–23.

    Article  CAS  PubMed  Google Scholar 

  32. Borthwick F, Allen AM, Taylor JM, Graham A. Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci (Lond). 2010;119:265–72.

    Article  CAS  Google Scholar 

  33. Gomes C, Oh SD, Kim JW, Chun SY, Lee K, Kwon HB, Soh J. Expression of the putative sterol binding protein Stard6 gene is male germ cell specific. Biol Reprod. 2005;72:651–8.

    Article  CAS  PubMed  Google Scholar 

  34. Golas A, Malek P, Piasecka M, Styrna J. Sperm mitochondria diaphorase activity-a gene mapping study of recombinant inbred strains of mice. Int J Dev Biol. 2010;54:667–73.

    Article  CAS  PubMed  Google Scholar 

  35. van Helvoort A, de Brouwer, Elferink RP, Borst P. Mice without phosphatidylcholine transfer protein have no defects in the secretion of phosphatidylcholine into bile or into lung airspaces. Proc Natl Acad Sci U S A. 1999;96:11501–6.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Scapa EF, Pocai A, Wu MK, Gutierrez-Juarez R, Glenz L, Kanno K, Li H, Biddinger S, Jelicks LA, Rossetti L, Cohen DE. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2. FASEB J. 2008;22:2579–90.

    Article  CAS  PubMed  Google Scholar 

  37. Shishova EY, Stoll JM, Ersoy BA, Shrestha S, Scapa EF, Li Y, Niepel MW, Su Y, Jelicks LA, Stahl GL, Glicksman MA, Gutierrez-Juarez R, Cuny GD, Cohen DE. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production. Hepatology. 2011;54:664–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Durand S, Angeletti S, Genti-Raimondi S. GTT1/StarD7, a novel phosphatidylcholine transfer protein-like highly expressed in gestational trophoblastic tumour: cloning and characterization. Placenta. 2004;25:37–44.

    Article  CAS  PubMed  Google Scholar 

  39. Horibata Y, Sugimoto H. StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria. J Biol Chem. 2010;285:7358–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Olayioye MA, Hoffmann P, Pomorski T, Armes J, Simpson RJ, Kemp BE, Lindeman GJ, Visvader JE. The phosphoprotein StarD10 is overexpressed in breast cancer and cooperates with ErbB receptors in cellular transformation. Cancer Res. 2004;64:3538–44.

    Article  CAS  PubMed  Google Scholar 

  41. Yamanaka M, Koga M, Tanaka H, Nakamura Y, Ohta H, Yomogida K, Tsuchida J, Iguchi N, Nojima H, Nozaki M, Matsumiya K, Okuyama A, Toshimori K, Nishimune Y. Molecular cloning and characterization of phosphatidylcholine transfer protein-like protein gene expressed in murine haploid germ cells. Biol Reprod. 2000;62:1694–1701.

    Article  CAS  PubMed  Google Scholar 

  42. Ito M, Yamanashi Y, Toyoda Y, Izumi-Nakaseko H, Oda S, Sugiyama A, Kuroda M, Suzuki H, Takada T, Adachi-Akahane S. Disruption of Stard10 gene alters the PPARα-mediated bile acid homeostasis. Biochim Biophys Acta (BBA)—Mol Cell Biol Lipids. 2013;1831:459–68.

    Article  CAS  Google Scholar 

  43. Olayioye MA, Vehring S, Muller P, Herrmann A, Schiller J, Thiele C, Lindeman GJ, Visvader JE, Pomorski T. StarD10, a START domain protein overexpressed in breast cancer, functions as a phospholipid transfer protein. J Biol Chem. 2005;280:27436–42.

    Article  CAS  PubMed  Google Scholar 

  44. Olayioye MA, Buchholz M, Schmid S, Schoffler P, Hoffmann P, Pomorski T. Phosphorylation of StarD10 on serine 284 by casein kinase II modulates its lipid transfer activity. J Biol Chem. 2007;282:22492–8.

    Article  CAS  PubMed  Google Scholar 

  45. Murphy NC, Biankin AV, Millar EK, McNeil CM, O’Toole SA, Segara D, Crea P, Olayioye MA, Lee CS, Fox SB, Morey AL, Christie M, Musgrove EA, Daly RJ, Lindeman GJ, Henshall SM, Visvader JE, Sutherland RL. Loss of STARD10 expression identifies a group of poor prognosis breast cancers independent of HER2/Neu and triple negative status. Int J Cancer. 2009;126:1445–53.

    Google Scholar 

  46. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide. Nature. 2003;426:803–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hanada K, Kumagai K, Tomishige N, Yamaji T. CERT-mediated trafficking of ceramide. Biochim Biophys Acta. 2009;1791:684–91.

    Article  CAS  PubMed  Google Scholar 

  48. Kang HW, Wei J, Cohen DE. PC-TP/StARD2: of membranes and metabolism. Trends Endocrinol Metab. 2010;21:449–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Mencarelli C, Losen M, Hammels C, De Vry J, Hesselink MK, Steinbusch HW, De Baets MH, Martinez-Martinez P. The ceramide transporter and the Goodpasture antigen binding protein: one protein-one function? J Neurochem. 2010;113:1369–86.

    CAS  PubMed  Google Scholar 

  50. Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta. 2007;1771:654–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 1998;58:2196–9.

    CAS  PubMed  Google Scholar 

  52. Ching YP, Wong CM, Chan SF, Leung TH, Ng DC, Jin DY, Ng IO. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem. 2003;278:10824–30.

    Article  CAS  PubMed  Google Scholar 

  53. Durkin ME, Ullmannova V, Guan M, Popescu NC. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene. 2007;26:4580–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kim TY, Healy KD, Der CJ, Sciaky N, Bang YJ, Juliano RL. Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. J Biol Chem. 2008;283:32762–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yamaga M, Sekimata M, Fujii M, Kawai K, Kamata H, Hirata H, Homma Y, Yagisawa H. A PLCdelta1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. Genes Cells. 2004;9:25–37.

    Article  CAS  PubMed  Google Scholar 

  56. Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1: a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med. 2007;11:1185–207.

    Article  CAS  PubMed  Google Scholar 

  57. Artemenko IP, Zhao D, Hales DB, Hales KH, Jefcoate CR. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem. 2001;276:46583–96.

    Article  CAS  PubMed  Google Scholar 

  58. Hunt MC, Yamada J, Maltais LJ, Wright MW, Podesta EJ, Alexson S. A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases. J Lipid Res. 2005;46:2029–32.

    Article  CAS  PubMed  Google Scholar 

  59. Kirkby B, Roman N, Kobe B, Kellie S, Forwood JK. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res. 2010;49:366–77.

    Article  CAS  PubMed  Google Scholar 

  60. Adams SH, Chui C, Schilbach SL, Yu XX, Goddard AD, Grimaldi JC, Lee J, Dowd P, Colman S, Lewin DA. BFIT, a unique acyl-CoA thioesterase induced in thermogenic brown adipose tissue: cloning, organization of the human gene and assessment of a potential link to obesity. Biochem J. 2001;360:135–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Suematsu N, Isohashi F. Molecular cloning and functional expression of human cytosolic acetyl-CoA hydrolase. Acta Biochim Pol. 2006;53:553–61.

    CAS  PubMed  Google Scholar 

  62. Suematsu N, Okamoto K, Isohashi F. Mouse cytosolic acetyl-CoA hydrolase, a novel candidate for a key enzyme involved in fat metabolism: cDNA cloning, sequencing and functional expression. Acta Biochim Pol. 2002;49:937–45.

    CAS  PubMed  Google Scholar 

  63. Suematsu N, Okamoto K, Shibata K, Nakanishi Y, Isohashi F. Molecular cloning and functional expression of rat liver cytosolic acetyl-CoA hydrolase. Eur J Biochem. 2001;268:2700–9.

    Article  CAS  PubMed  Google Scholar 

  64. Alpy F, Tomasetto C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci. 2005;118:2791–801.

    Article  CAS  PubMed  Google Scholar 

  65. Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem. 2003;278:22183–6.

    Article  CAS  PubMed  Google Scholar 

  66. Torres Jorge Z, Summers Matthew K, Peterson D, Brauer Matthew J, Lee J, Senese S, Gholkar Ankur A, Lo Y-C, Lei X, Jung K, Anderson David C, Davis David P, Belmont L, Jackson Peter K. The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly. Cell. 2011;147:1309–23.

    Article  CAS  PubMed  Google Scholar 

  67. Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol. 2010;11:739–50.

    Article  CAS  PubMed  Google Scholar 

  68. Prinz WA. Non-vesicular sterol transport in cells. Prog Lipid Res. 2007;46:297–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Strauss JF, 3rd, Kishida T, Christenson LK, Fujimoto T, Hiroi H. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol Cell Endocrinol. 2003;202:59–65.

    Article  CAS  PubMed  Google Scholar 

  70. Barbar E, Lehoux JG, Lavigne P. Toward the NMR structure of StAR. Mol Cell Endocrinol. 2009;300:89–93.

    Article  CAS  PubMed  Google Scholar 

  71. Bose M, Whittal RM, Miller WL, Bose HS. Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem. 2008;283:8837–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Murcia M, Faraldo-Gomez JD, Maxfield FR, Roux B. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res. 2006;47:2614–30.

    Article  CAS  PubMed  Google Scholar 

  73. Lorin A, Letourneau D, Lefebvre A, LeHoux JG, Lavigne P. (1)H, (13)C, and (15)N backbone chemical shift assignments of StAR-related lipid transfer domain protein 5 (STARD5). Biomol NMR Assign. 2013;7:21–4.

    Article  CAS  PubMed  Google Scholar 

  74. Soccio RE, Adams RM, Maxwell KN, Breslow JL. Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins: activation of StARD4 by sterol regulatory element-binding protein-2 and StARD5 by endoplasmic reticulum stress. J Biol Chem. 2005;280:19410–8.

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez-Agudo D, Calderon-Dominguez M, Medina MA, Ren S, Gil G, Pandak WM. ER stress increases StarD5 expression by stabilizing its mRNA and leads to relocalization of its protein from the nucleus to the membranes. J Lipid Res. 2012;53:2708–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Clark Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, B., Stocco, D. (2014). An Introduction to the Steroidogenic Acute Regulatory Protein (StAR)-Related Lipid Transfer Domain Protein Family. In: Clark, B., Stocco, D. (eds) Cholesterol Transporters of the START Domain Protein Family in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1112-7_1

Download citation

Publish with us

Policies and ethics