Skip to main content

On the Circle Preserving Property of Möbius Transformations

  • Chapter
  • First Online:
Mathematics Without Boundaries
  • 1732 Accesses

Abstract

This paper is mainly concerned with the study of circle-preserving property of Möbius transformations acting on \(\widehat{\mathbf{R}}^{n}=\mathbf{R} ^{n}\cup \left\{\infty \right\}\). The circle-preserving property is the most known invariant characteristic property of Möbius transformations. Obviously, a Möbius transformation acting on \(\widehat{\mathbf{R}}^{n}\) is circle-preserving. Recently, for the converse statement, some interesting and nice results have been obtained. Here, we investigate these studies. We consider the relationships between Möbius transformations and sphere-preserving maps in \(\widehat{\mathbf{R}} ^{n}\) since the studies about the circle-preserving property of maps in \(\widehat{\mathbf{R}}^{n}\) are related to the study of sphere-preserving maps. For the case n = 2, we also consider the problem whether or not the circle-preserving property is an invariant characteristic property of Möbius transformations for the circles corresponding to any norm function \(\left\Vert.\right\Vert\) on \(\mathbf{C}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aczel, J., Mckiernan, M.A.: On the characterization of plane projective and complex Moebius-transformations. Math. Nachr. 33, 315–337 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beardon, A.F.: Curvature, circles, and conformal maps. Am. Math. Mon. 94(1), 48–53 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beardon, A.F..: The Geometry of Discrete Groups. Graduate Texts in Mathematics, 91. Springer-Verlag, New York (1995)

    Google Scholar 

  4. Beardon, A.F., Minda, D.: Sphere-preserving maps in inversive geometry. Proc. Am. Math. Soc. 130(4), 987–998 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blair, D.: Inversion Theory and Conformal Mapping. Student Mathematical Library, issue 9. American Mathematical Society, Providence (2000)

    Google Scholar 

  6. Bulut, S., Özgür, N.Y.: A new characteristic of Möbius transformations by use of Apollonius points of pentagons. Turk. J. Math. 28(4), 299–305 (2004)

    MATH  Google Scholar 

  7. Bulut, S., Özgür, N.Y.: A new characterization of Möbius transformations by use of apollonius points of (\(2n-1\))-gons. Acta Math. Sinica Engl. Ser. 21(3), 667–672 (2005)

    Article  MATH  Google Scholar 

  8. Caratheodory, C.: The most general transformations of plane regions which transform circles into circles. Bull. Am. Math. Soc. 43, 573–579 (1937)

    Article  MathSciNet  Google Scholar 

  9. Coxeter, H.S.M.: Introduction to geometry. Wiley, New York (1969)

    MATH  Google Scholar 

  10. Ford, L.R.: Automorphic functions. Chelsea, New York (1951)

    Google Scholar 

  11. Gibbons, J., Webb, C.: Circle-preserving transformations. Notices Am. Math. Soc. 22, 68–2 (1975). (Abstract)

    Google Scholar 

  12. Gibbons, J., Webb, C.: Circle-preserving functions of spheres. Trans. Am. Math. Soc. 248(1), 67–83 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haruki, H.: A proof of the principle of circle-transformations by use of a theorem on univalent functions. L’enseignement Math. 18, 145–146 (1972)

    MathSciNet  MATH  Google Scholar 

  14. Haruki, H., Rassias, T.M.: A new invariant characteristic property of Möbius transformations from the standpoint of conformal mapping. J. Math. Anal. Appl. 181(2), 320–327 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius points of triangles. J. Math. Anal. Appl. 197(1), 14–22 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haruki, H., Rassias, T.M.: A new characteristic of Möbius transformations by use of Apollonius quadrilaterals. Proc. Am. Math. Soc. 126, 2857–2861 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haruki, H., Rassias, T.M.: A new characterization of Möbius transformations by use of Apollonius hexagons. Proc. Am. Math. Soc. 128(7), 2105–2109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Höfer, R.: A characterization of Möbius transformations. Proc. Am. Math. Soc. 128(4), 1197–1201 (1999)

    Article  Google Scholar 

  19. Jeffers, J.: Lost theorems of geometry. Am. Math. Mon. 107, 800–812 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, G.A., Singerman, D.: Complex Functions. An Algebraic and Geometric Viewpoint. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  21. Lehner, J.: Discontinuous Groups and Automorphic Functions. Mathematical Surveys. 8. American Mathematical Society, Providence (1964)

    Book  MATH  Google Scholar 

  22. Li, B., Wang, Y.: Transformations and non-degenerate maps. Sci. China Ser. A. 48, 195–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Yao, G.: On characterizations of sphere-preserving maps. Math. Proc. Camb. Philos. Soc. 147(2), 439–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, L., Yao, G.: A new characterization for isometries by triangles. N. Y. J. Math. 15, 423–429 (2009)

    MATH  Google Scholar 

  25. Nehari, Z.: Conformal Mapping. McGraw-Hill, New York (1952)

    MATH  Google Scholar 

  26. Niamsup, P.: A note on the characteristics of Möbius transformations. J. Math. Anal. Appl. 248(1), 203–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Samaris, N.: A new characterization of Möbius transformation by use of 2n points. J. Nat. Geom. 22(1–2), 35–38 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Yao, G.: On existence of degenerate circle-preserving maps. J. Math. Anal. Appl. 334(2), 950–953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yao, G.: Transformations of spheres without the injectivity assumption. Quasiconformal mappings, Riemann surfaces, and Teichmüller spaces. Contemp. Math. Am. Math. Soc. Providence 575, 371–375 (2012)

    Article  Google Scholar 

  30. Yı lmaz Özgür, N.: On some mapping properties of Möbius transformations. Aust. J. Math. Anal. Appl. 6(13), 8 (2010)

    Google Scholar 

  31. Yı lmaz Özgür, N., Bulut, S.: A note on the characteristic properties of Möbius transformations. Rad. Mat. 12, 129–133 (2004)

    MathSciNet  Google Scholar 

  32. Yı lmaz Özgür, N., Bulut, S.: On the invariant characteristic properties of Möbius transformations. Nonlinear Funct. Anal. Appl. 10(5), 885–894 (2005)

    MathSciNet  Google Scholar 

  33. Yı lmaz Özgür, N., Bulut, S., Özgür, C.: On the images of the helix under the Möbius transformations. Nonlinear Funct. Anal. Appl. 10(5), 743–749 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Th. M. Rassias for his encouragement to prepare this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Yılmaz Özgür .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Özgür, N. (2014). On the Circle Preserving Property of Möbius Transformations. In: Rassias, T., Pardalos, P. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1106-6_17

Download citation

Publish with us

Policies and ethics