Skip to main content

VI.E.1. Pharmacologic Vitreolysis with Ocriplasmin: Basic Science Studies

  • Chapter
  • First Online:
Vitreous

Abstract

Pharmacologic vitreolysis is an important new avenue of ophthalmic therapeutics, representing a paradigm shift from surgical to pharmacologic therapy of vitreoretinal diseases [24, 26, 27]. Ocriplasmin (des-kringle 1-5 plasmin), formerly called microplasmin, is a truncated recombinant form of plasmin. Originally shown to form upon autolytic degradation of plasmin at high pH, it contains the catalytic domain of plasmin but without associated kringles [38]. In ophthalmology, ocriplasmin was initially studied as a possible alternative to plasmin enzyme (desirable because of the difficulties with plasmin preparation) and was found to be a stable, well-characterized, clinical grade product, which was notable given its highly autolytic nature [34].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts F, Noppen B, Fonteyn L, et al. Mechanism of inactivation of ocriplasmin in porcine vitreous. Biophys Chem. 2012;165–166:30–8.

    Article  PubMed  Google Scholar 

  2. Banacky P, Linder B. Model of serine proteases charge relay system - PCILO study. Biophys Chem. 1981;13:223–31.

    Article  PubMed  CAS  Google Scholar 

  3. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–54.

    PubMed  CAS  Google Scholar 

  4. Chen WL, Mo W, Sun K, et al. Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer retina during enzymatic vitrectomy. Curr Eye Res. 2009;34:1057–64.

    Article  PubMed  CAS  Google Scholar 

  5. Cliffton EE. The use of plasmin in humans. Ann N Y Acad Sci. 1957;68:209–29.

    Article  PubMed  CAS  Google Scholar 

  6. Collen D. Natural inhibitors of fibrinolysis. J Clin Pathol. 1980;33:24–30.

    Article  Google Scholar 

  7. Committee for Medicinal Products for Human Use: Assessment report of Jetrea. 2013; European Medicines Agency. Accessed Sept 2013. www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002381/WC500142228.pdf.

  8. de Smet MD, Valmaggia C, Zarrantz J, et al. Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci. 2009;50:814–9.

    Article  PubMed  Google Scholar 

  9. de Smet MD, Jonckx B, Vanhove M, et al. Pharmacokinetics of ocriplasmin in vitreous. Invest Ophthalmol Vis Sci. 2012;53:8208–13.

    Article  PubMed  Google Scholar 

  10. de Smet MD, Gandorfer A, Stalmans P, et al. Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial. Ophthalmology. 2009;116:1349–55.

    Article  PubMed  Google Scholar 

  11. Diaz-Llopis M, Udaondo P, Cervera E, et al. Vitrectomia enzimática por inyección intravítrea de plasmina autóloga como tratamiento inicial de las membranas epirretinianas maculares y el síndrome de tracción vitreomacular. Arch Soc Esp Oftalmol. 2009;84:91–100.

    Article  PubMed  CAS  Google Scholar 

  12. Gad El Kareem A, Willikens B, Vanhove M, et al. Characterization of a stabilized form of microplasmin for the induction of a posterior vitreous detachment. Curr Eye Res. 2010;35:909–15.

    Article  CAS  Google Scholar 

  13. Gad El Kareem AM, Willikens B, Stassen JM, et al. Differential vitreous dye diffusion following microplasmin or plasmin pre-treatment. Curr Eye Res. 2010;35:235–41.

    Article  CAS  Google Scholar 

  14. Gandorfer A, Rohleder M, Sethi C, et al. Posterior vitreous detachment induced by microplasmin. Invest Ophthalmol Vis Sci. 2004;45:641–7.

    Article  PubMed  Google Scholar 

  15. Gao BB, Chen X, Timothy N, et al. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.

    Article  PubMed  CAS  Google Scholar 

  16. Hermel M, Dailey W, Hartzer M. Efficacy of plasmin, microplasmin, and streptokinase-plasmin complex for the in-vitro degradation of fibronectin and laminin-implications for vitreoretinal surgery. Curr Eye Res. 2011;35:419–24.

    Article  Google Scholar 

  17. Hikichi T, Yanagiya N, Kado M, et al. Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous. Retina. 1999;19:55–8.

    Article  PubMed  CAS  Google Scholar 

  18. Howden GD. The successful treatment of a case of central retinal vein thrombosis with intravenous fibrinolysin. Can J Ophthalmol. 1959;81:382–4.

    CAS  Google Scholar 

  19. Kohno T, Sorgente N, Ishibashi T, et al. Immunofluorescent studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci. 1987;28:506–14.

    PubMed  CAS  Google Scholar 

  20. Margherio AR, Margherio RR, Hartzer M, et al. Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes. Ophthalmol. 1998;105:1617–20.

    Article  CAS  Google Scholar 

  21. Nagai N, Demarsin E, van Hoef B, et al. Recombinant human microplasmin: production and potential therapeutic properties. J Thromb Haemost. 2003;1:307–13.

    Article  PubMed  CAS  Google Scholar 

  22. Pakola S, Cahillane G, Stassen J, et al. Neutralization of antiplasmin by microplasmin: a randomized, double-blind, placebo-controlled, ascending-dose study in healthy male volunteers. Clin Ther. 2009;31:1688–706.

    Article  PubMed  CAS  Google Scholar 

  23. Ploplis VA, Castellino FJ. Nonfibrinolytic functions of plasminogen. Methods. 2000;21:103–10.

    Article  PubMed  CAS  Google Scholar 

  24. Sebag J. Pharmacologic vitreolysis. Retina. 1998;18:1–3.

    Article  PubMed  CAS  Google Scholar 

  25. Sebag J. Anomalous PVD – a unifying concept in vitreo-retinal diseases. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.

    Article  PubMed  CAS  Google Scholar 

  26. Sebag J. Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc. 2005;103:473–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Sebag J. Pharmacologic vitreolysis – premise and promise of the first decade. Retina. 2009;29:871–4.

    Article  PubMed  CAS  Google Scholar 

  28. Sebag J, Ansari R, Suh K. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245:576–80.

    Article  PubMed  CAS  Google Scholar 

  29. Stalmans P, de Laey C, de Smet M, et al. Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI-IIT trial). Retina. 2010;30:1122–7.

    Article  PubMed  Google Scholar 

  30. Takano A, Hirata A, Inomata Y, et al. Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol. 2005;140:654–60.

    Article  PubMed  CAS  Google Scholar 

  31. Turner RB, Liu L, Sazonova IY, Reed GL. Structural elements that govern the substrate specificity of the clot-dissolving enzyme plasmin. J Biol Chem. 2002;277:33068–74.

    Article  PubMed  CAS  Google Scholar 

  32. Udaondo P, Diaz-Llopis M, Garcia-Delpech S, et al. Intravitreal plasmin without vitrectomy for macular edema secondary to branch retinal vein occlusion. Arch Ophthalmol. 2011;129:283–7.

    Article  PubMed  Google Scholar 

  33. Uemura A, Nakamura M, Kachi S, et al. Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol. 2005;123:209–13.

    Article  PubMed  CAS  Google Scholar 

  34. Valmaggia C, Willekens B, de Smet MD. Microplasmin induced vitreolysis in porcine eyes. Invest Ophthalmol Vis Sci. 2003;44:E Abstract 3050.

    Google Scholar 

  35. Verstraeten TC, Chapman C, Hartzer M, et al. Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol. 1993;111:849–54.

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Lin X, Loy J, et al. Science. 1998;281:1662–5.

    Article  PubMed  CAS  Google Scholar 

  37. Wu CW, Sauter JL, Johnson PK, et al. Identification and localization of major soluble vitreous proteins in human ocular tissue. Am J Ophthalmol. 2004;137:655–61. doi:10.1016/j.ajo.2003.11.009.

    PubMed  CAS  Google Scholar 

  38. Wu HL, Shi GY, Bender ML. Preparation and purification of microplasmin. Proc Natl Acad Sci U S A. 1987;84:8292–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. de Smet MDCM, PhD, FRCSC, FRCOphth, FMH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Smet, M.D., Jonckx, B. (2014). VI.E.1. Pharmacologic Vitreolysis with Ocriplasmin: Basic Science Studies. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_52

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics