Skip to main content

Drugs of Abuse and NeuroAIDS: Opiates

  • Chapter
  • First Online:
Neuroinflammation and Neurodegeneration
  • 1929 Accesses

Abstract

Opiate abuse is a major global health problem, due in part to the fact that the HIV infection often occurs with intravenous drug abuse. There is strong clinical and preclinical evidence that opiate abuse promotes the neurodegeneration that can occur in association with HIV infection. Morphine or heroin can exert direct neurotoxic effects on neuronal cells and alter neuronal function. In addition, opiate administration after the virus infection has been established can exacerbate the neurotoxic properties of some of the HIV products. This can include the induction of pro-inflammatory mediators including both cytokines and chemokines and a loss of blood–brain barrier integrity. It is also clear that the activation of opioid receptors by agonists like morphine can initiate cross-talk interactions with other receptors, most notably the chemokine receptors CCR5 and CXCR4. Opiates clearly exert both pro- and anti-inflammatory activity, and our understanding of how these opposing influences are balanced in both the brain and periphery is rapidly advancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers BM, Degenhardt L, Ali H, Wiessing L, Hickman M, Mattick RP, et al. HIV prevention, treatment, and care services for people who inject drugs: a systematic review of global, regional, and national coverage. Lancet. 2010;375:1014–28.

    PubMed  Google Scholar 

  2. Vlahov D, Robertson AM, Strathdee SA. Prevention of HIV infection among injection drug users in resource-limited settings. Clin Infect Dis. 2010;50 Suppl 3:S114–21.

    PubMed Central  PubMed  Google Scholar 

  3. Compton WM, Volkow ND. Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend. 2006;83 Suppl 1:S4–7.

    CAS  PubMed  Google Scholar 

  4. Donahoe RM, Vlahov D. Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol. 1998;83:77–87.

    CAS  PubMed  Google Scholar 

  5. Finley MJ, Happel CM, Kaminsky DE, Rogers TJ. Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol. 2008;252:146–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001;62:111–23.

    CAS  PubMed  Google Scholar 

  7. Dutta R, Roy S. Mechanism(s) involved in opioid drug abuse modulation of HAND. Curr HIV Res. 2012;10:469–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Madera-Salcedo IK, Cruz SL, Gonzalez-Espinosa C. Morphine decreases early peritoneal innate immunity responses in Swiss-Webster and C57BL6/J mice through the inhibition of mast cell TNF- release. J Neuroimmunol. 2011;232:101–7.

    CAS  PubMed  Google Scholar 

  9. Novick DM, Ochshorn M, Ghali V, Croxson TS, Mercer WD, Chiorazzi N, et al. Natural killer cell activity and lymphocyte subsets in parenteral heroin abusers and long-term methadone maintenance patients. J Pharmacol Exp Therapeut. 1989;250:606–10.

    CAS  Google Scholar 

  10. Kreek MJ, Khuri E, Flomenberg N, Albeck H, Ochshorn M. Immune status of unselected methadone maintained former heroin addicts. Progress Clin Biol Res. 1990;328:445–8.

    CAS  Google Scholar 

  11. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol. 2011;6:442–65.

    PubMed Central  PubMed  Google Scholar 

  12. Wang J, Barke RA, Charboneau R, Roy S. Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol. 2005; 174:426–34.

    CAS  PubMed  Google Scholar 

  13. MacFarlane AS, Peng X, Meissler Jr JJ, Rogers TJ, Geller EB, et al. Morphine increases susceptibility to oral Salmonella typhimurium infection. J Infect Dis. 2000;181:1350–8.

    CAS  PubMed  Google Scholar 

  14. Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C. Effect of morphine on resistance to infection. J Infect Dis. 1983;148:656–66.

    CAS  PubMed  Google Scholar 

  15. Chao CC, Sharp BM, Pomeroy C, Filice GA, Peterson PK. Lethality of morphine in mice infected with Toxoplasma gondii. J Pharmacol Exp Therapeut. 1990;252:605–9.

    CAS  Google Scholar 

  16. Risdahl JM, Peterson PK, Chao CC, Pijoan C, Molitor TW. Effects of morphine dependence on the pathogenesis of swine herpesvirus infection. J Infect Dis. 1993;167:1281–7.

    CAS  PubMed  Google Scholar 

  17. Starec M, Rouveix B, Sinet M, Chau F, Desforges B, Pocidalo JJ, et al. Immune status and survival of opiate- and cocaine-treated mice infected with Friend virus. J Pharmacol Exp Therapeut. 1991;259:745–50.

    CAS  Google Scholar 

  18. Wang J, Barke RA, Charboneau R, Schwendener R, Roy S. Morphine induces defects in early response of alveolar macrophages to Streptococcus pneumoniae by modulating TLR9-NF-kappa B signaling. J Immunol. 2008;180:3594–600.

    CAS  PubMed  Google Scholar 

  19. Brack A, Rittner HL, Stein C. Immunosuppressive effects of opioids – clinical relevance. J Neuroimmune Pharmacol. 2011;6:490–502.

    PubMed  Google Scholar 

  20. Donahoe RM, O’Neil SP, Marsteller FA, Novembre FJ, Anderson DC, Lankford-Turner P, et al. Probable deceleration of progression of Simian AIDS affected by opiate dependency: studies with a rhesus macaque/SIVsmm9 model. JAIDS. 2009;50:241–9.

    PubMed  Google Scholar 

  21. Chuang RY, Chuang LF, Li Y, Kung HF, Killam Jr KF. SIV mutations detected in morphine-treated Macaca mulatta following SIVmac239 infection. Adv Exp Med Biol. 1995;373:175–81.

    CAS  PubMed  Google Scholar 

  22. Marcario JK, Riazi M, Adany I, Kenjale H, Fleming K, Marquis J, et al. Effect of morphine on the neuropathogenesis of SIVmac infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol. 2008;3:12–25.

    PubMed  Google Scholar 

  23. Kumar R, Torres C, Yamamura Y, Rodriguez I, Martinez M, Staprans S, et al. Modulation by morphine of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human immunodeficiency virus. J Virol. 2004;78:11425–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Fernandez SF, et al. Tight junction regulation by morphine and HIV-1 tat modulates blood-brain barrier permeability. J Clin Immunol. 2008;28:528–41.

    CAS  PubMed  Google Scholar 

  25. Bokhari SM, Yao H, Bethel-Brown C, Fuwang P, Williams R, Dhillon NK, et al. Morphine enhances Tat-induced activation in murine microglia. J Neurovirol. 2009;15(3):219–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lynch JL, Banks WA. Opiate modulation of IL-1alpha, IL-2, and TNF-alpha transport across the blood-brain barrier. Brain Behav Immun. 2008;22:1096–102.

    CAS  PubMed  Google Scholar 

  27. Martinez AJ, Sell M, Mitrovics T, Stoltenburg-Didinger G, Iglesias-Rozas JR, Giraldo-Velasquez MA, et al. The neuropathology and epidemiology of AIDS. A Berlin experience. A review of 200 cases. Pathol Res Pract. 1995;191:427–43.

    CAS  PubMed  Google Scholar 

  28. Bell JE, Donaldson YK, Lowrie S, McKenzie CA, Elton RA, Chiswick A, et al. Influence of risk group and zidovudine therapy on the development of HIV encephalitis and cognitive impairment in AIDS patients. Aids. 1996;10:493–9.

    CAS  PubMed  Google Scholar 

  29. Platt DM, Grech DM, Rowlett JK, Spealman RD. Discriminative stimulus effects of morphine in squirrel monkeys: stimulants, opioids, and stimulant-opioid combinations. J Pharmacol Exp Therapeut. 1999;290:1092–100.

    CAS  Google Scholar 

  30. Stein C, Schafer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9:1003–8.

    CAS  PubMed  Google Scholar 

  31. Banerjee A, Strazza M, Wigdahl B, Pirrone V, Meucci O, Nonnemacher MR, et al. Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis. J Neurovirol. 2011;17:291–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Belkowski SM, Zhu J, Liu-Chen LY, Eisenstein TK, Adler MW, et al. Sequence of kappa-opioid receptor cDNA in the R1.1 thymoma cell line. J Neuroimmunol. 1995;62:113–7.

    CAS  PubMed  Google Scholar 

  33. Alicea C, Belkowski SM, Sliker JK, Zhu J, Liu-Chen LY, Eisenstein TK, et al. Characterization of kappa-opioid receptor transcripts expressed by T cells and macrophages. J Neuroimmunol. 1998;91:55–62.

    CAS  PubMed  Google Scholar 

  34. Chuang TK, Killam Jr KF, Chuang LF, Kung HF, Sheng WS, et al. Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Comm. 1995;216:922–30.

    CAS  PubMed  Google Scholar 

  35. Bohn LM, Belcheva MM, Coscia CJ. Mu-opioid agonist inhibition of kappa-opioid receptor-stimulated extracellular signal-regulated kinase phosphorylation is dynamin-dependent in C6 glioma cells. J Neurochem. 2000;74:574–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Rogers TJ, Peterson PK. Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol. 2003;24:116–21.

    CAS  PubMed  Google Scholar 

  37. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology. 1999;20:322–39.

    CAS  PubMed  Google Scholar 

  38. Hauser KF, Gurwell JA, Turbek CS. Morphine inhibits Purkinje cell survival and dendritic differentiation in organotypic cultures of the mouse cerebellum. Exp Neurol. 1994;130: 95–105.

    CAS  PubMed  Google Scholar 

  39. Kofke WA, Garman RH, Stiller RL, Rose ME, Garman R. Opioid neurotoxicity: fentanyl dose-response effects in rats. Anesthesia Analgesia. 1996;83:1298–306.

    CAS  PubMed  Google Scholar 

  40. Kofke WA, Garman RH, Garman R, Rose ME. Opioid neurotoxicity: fentanyl-induced exacerbation of cerebral ischemia in rats. Brain Res. 1999;818:326–34.

    CAS  PubMed  Google Scholar 

  41. Singhal PC, Sharma P, Kapasi AA, Reddy K, Franki N, Gibbons N. Morphine enhances macrophage apoptosis. J Immunol. 1998;160:1886–93.

    CAS  PubMed  Google Scholar 

  42. Nair MP, Schwartz SA, Polasani R, Hou J, Sweet A, Chadha KC. Immunoregulatory effects of morphine on human lymphocytes. Clin Diagn Lab Immunol. 1997;4:127–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Yin DL, Ren XH, Zheng ZL, Pu L, Jiang LZ, Ma L, et al. Etorphine inhibits cell growth and induces apoptosis in SK-N-SH cells: involvement of pertussis toxin-sensitive G proteins. Neurosci Res Suppl. 1997;29:121–7.

    CAS  Google Scholar 

  44. Singhal PC, Reddy K, Franki N, Sanwal V, Gibbons N. Morphine induces splenocyte apoptosis and enhanced mRNA expression of cathepsin-B. Inflammation. 1997;21:609–17.

    CAS  PubMed  Google Scholar 

  45. Singhal PC, Kapasi AA, Reddy K, Franki N, Gibbons N, Ding G. Morphine promotes apoptosis in Jurkat cells. J Leuk Biol. 1999;66:650–8.

    CAS  Google Scholar 

  46. Buttner A. Review: the neuropathology of drug abuse. Neuropathol Appl Neurobiol. 2011;37: 118–34.

    CAS  PubMed  Google Scholar 

  47. Kish SJ, Kalasinsky KS, Derkach P, Schmunk GA, Guttman M, Ang L, et al. Striatal dopaminergic and serotonergic markers in human heroin users. Neuropsychopharmacology. 2001;24: 561–7.

    CAS  PubMed  Google Scholar 

  48. Acquas E, Carboni E, Di CG. Profound depression of mesolimbic dopamine release after morphine withdrawal in dependent rats. Eur J Pharmacol. 1991;193:133–4.

    CAS  PubMed  Google Scholar 

  49. Crippens D, Robinson TE. Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res. 1994;650:56–62.

    CAS  PubMed  Google Scholar 

  50. Simantov R. Chronic morphine alters dopamine transporter density in the rat brain: possible role in the mechanism of drug addiction. Neurosci Lett. 1993;163:121–4.

    CAS  PubMed  Google Scholar 

  51. Anthony IC, Norrby KE, Dingwall T, Carnie FW, Millar T, Arango JC, et al. Predisposition to accelerated Alzheimer-related changes in the brains of human immunodeficiency virus negative opiate abusers. Brain. 2010;133:12–98.

    Google Scholar 

  52. Ramage SN, Anthony IC, Carnie FW, Busuttil A, Robertson R, Bell JE, et al. Hyperphosphorylated tau and amyloid precursor protein deposition is increased in the brains of young drug abusers. Neuropathol Appl Neurobiol. 2005;31:439–48.

    CAS  PubMed  Google Scholar 

  53. Peterson PK, Sharp B, Gekker G, Brummitt C, Keane WF. Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells. J Clin Invest. 1987;80:824–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Lysle DT, Coussons ME, Watts VJ, Bennett EH, Dykstra LA. Morphine-induced alterations of immune status: dose dependency, compartment specificity and antagonism by naltrexone. J Pharmacol Exp Therapeut. 1993;265:1071–8.

    CAS  Google Scholar 

  55. Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, et al. Morphine directs T cells toward T(H2) differentiation. Surgery. 2001;130:304–9.

    CAS  PubMed  Google Scholar 

  56. Roy S, Wang J, Gupta S, Charboneau R, Loh HH, Barke RA. Chronic morphine treatment differentiates T helper cells to Th2 effector cells by modulating transcription factors GATA 3 and T-bet. J Neuroimmunol. 2004;147:78–81.

    CAS  PubMed  Google Scholar 

  57. Roy S, Wang J, Kelschenbach J, Koodie L, Martin J. Modulation of immune function by morphine: implications for susceptibility to infection. J Neuroimmune Pharmacol. 2006;1:77–89.

    PubMed  Google Scholar 

  58. Martucci C, Franchi S, Lattuada D, Panerai AE, Sacerdote P. Differential involvement of RelB in morphine-induced modulation of chemotaxis, NO, and cytokine production in murine macrophages and lymphocytes. J Leuk Biol. 2007;81:344–54.

    CAS  Google Scholar 

  59. Bonnet MP, Beloeil H, Benhamou D, Mazoit JX, Asehnoune K. The mu opioid receptor mediates morphine-induced tumor necrosis factor and interleukin-6 inhibition in toll-like receptor 2-stimulated monocytes. Anesthesia Analgesia. 2008;106:1142–9.

    CAS  PubMed  Google Scholar 

  60. Peng X, Mosser DM, Adler MW, Rogers TJ, Meissler Jr JJ, Eisenstein TK. Morphine enhances interleukin-12 and the production of other pro-inflammatory cytokines in mouse peritoneal macrophages. J Leuk Biol. 2000;68:723–8.

    CAS  Google Scholar 

  61. Roy S, Cain KJ, Chapin RB, Charboneau RG, Barke RA. Morphine modulates NF kappa B activation in macrophages. Biochem Biophys Res Comm. 1998;245:392–6.

    CAS  PubMed  Google Scholar 

  62. Hou YN, Vlaskovska M, Cebers G, Kasakov L, Liljequist S, Terenius L, et al. A mu-receptor opioid agonist induces AP-1 and NF-kappa B transcription factor activity in primary cultures of rat cortical neurons. Neurosci Lett. 1996;212:159–62.

    CAS  PubMed  Google Scholar 

  63. Wang X, Douglas SD, Commons KG, Pleasure DE, Lai J, Ho C, et al. A non-peptide substance P antagonist (CP-96,345) inhibits morphine-induced NF-kappa B promoter activation in human NT2-N neurons. J Neurosci Res. 2004;75:544–53.

    CAS  PubMed  Google Scholar 

  64. Kuprash DV, Udalova IA, Turetskaya RL, Rice NR, Nedospasov SA. Conserved kappa B element located downstream of the tumor necrosis factor alpha gene: distinct NF-kappa B binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene. 1995;11:97–106.

    CAS  PubMed  Google Scholar 

  65. Martin T, Cardarelli PM, Parry GC, Felts KA, Cobb RR. Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur J Immunol. 1997;27:1091–7.

    CAS  PubMed  Google Scholar 

  66. Moriuchi H, Moriuchi M, Fauci AS. Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J Immunol. 1997;158: 3483–91.

    CAS  PubMed  Google Scholar 

  67. Mukaida N, Okamoto S, Ishikawa Y, Matsushima K. Molecular mechanism of interleukin-8 gene expression. J Leuk Biol. 1994;56:554–8.

    CAS  Google Scholar 

  68. Stein B, Baldwin Jr AS. Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B. Mol Cell Biol. 1993;13:7191–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol. 1993;13:6231–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Galien R, Evans HF, Garcia T. Involvement of CCAAT/enhancer-binding protein and nuclear factor-kappa B binding sites in interleukin-6 promoter inhibition by estrogens. Mol Endocrinol. 1996;10:713–22.

    CAS  PubMed  Google Scholar 

  71. Azuma Y, Ohura K. Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-kappaB DNA binding in THP-1 differentiated to macrophage-like cells. Scand J Immunol. 2002;56:260–9.

    CAS  PubMed  Google Scholar 

  72. Happel C, Kutzler M, Rogers TJ. Opioid-induced chemokine expression requires NF-kB activity: the role of PKC. J Leuk Biol. 2011;89:301–9.

    CAS  Google Scholar 

  73. Song C, Rahim RT, Davey PC, Bednar F, Bardi G, Zhang L, et al. Protein kinase Czeta mediates μ-opioid receptor-induced cross-desensitization of chemokine receptor CCR5. J Biol Chem. 2011;286:20354–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004;5:392–401.

    CAS  PubMed  Google Scholar 

  75. Law PY, Loh HH, Wei LN. Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology. 2004;47 Suppl 1:300–11.

    CAS  PubMed  Google Scholar 

  76. Chao CC, Hu S, Molitor TW, Zhou Y, Murtaugh MP, Tsang M, et al. Morphine potentiates transforming growth factor-beta release from human peripheral blood mononuclear cell cultures. J Pharmacol Exp Therapeut. 1992;262:19–24.

    CAS  Google Scholar 

  77. Happel C, Steele AD, Finley MJ, Kutzler MA, Rogers TJ. DAMGO-induced expression of chemokines and chemokine receptors: the role of TGF-β1. J Leukoc Biol. 2008;83:956–63.

    CAS  PubMed  Google Scholar 

  78. Wetzel MA, Steele AD, Eisenstein TK, Adler MW, Henderson EE, Rogers TJ. Mu-opioid induction of monocyte chemoattractant protein-1, RANTES, and IFN-gamma-inducible protein-10 expression in human peripheral blood mononuclear cells. J Immunol. 2000;165:6519–24.

    CAS  PubMed  Google Scholar 

  79. Steele AD, Henderson EE, Rogers TJ. Mu-opioid modulation of HIV-1 coreceptor expression and HIV-1 replication. Virology. 2003;309:99–107.

    CAS  PubMed  Google Scholar 

  80. Wen H, Lu Y, Yao H, Buch S, Wen H, Lu Y, et al. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability. PLoS One. 2011;6:e21707.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73.

    CAS  PubMed  Google Scholar 

  82. Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med. 2008;14:731–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204:19–28.

    CAS  PubMed  Google Scholar 

  84. Gupta S, Knight AG, Gupta S, Knapp PE, Hauser KF, Keller JN, et al. HIV-Tat elicits microglial glutamate release: role of NAPDH oxidase and the cystine-glutamate antiporter. Neurosci Lett. 2010;485:233–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Turchan-Cholewo J, Liu Y, Gartner S, Reid R, Jie C, Peng X, et al. Increased vulnerability of ApoE4 neurons to HIV proteins and opiates: protection by diosgenin and L-deprenyl. Neurobiol Dis. 2006;23:109–19.

    CAS  PubMed  Google Scholar 

  86. Malik S, Khalique H, Buch S, Seth P, Malik S, Khalique H, et al. A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: implication in HIV/AIDS-drug abuse cases. PLoS One. 2011;6:e18116.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Hu S, Sheng WS, Lokensgard JR, Peterson PK. Morphine potentiates HIV-1 gp120-induced neuronal apoptosis. J Infect Dis. 2005;191:886–9.

    CAS  PubMed  Google Scholar 

  88. El-Hage N, Bruce-Keller AJ, Yakovleva T, Bazov I, Bakalkin G, Knapp PE, et al. Morphine exacerbates HIV-1 Tat-induced cytokine production in astrocytes through convergent effects on [Ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One. 2008;3:e4093.

    PubMed Central  PubMed  Google Scholar 

  89. El-Hage N, Wu G, Wang J, Ambati J, Knapp PE, Reed JL, et al. HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia. 2006;53:132–46.

    PubMed Central  PubMed  Google Scholar 

  90. El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia. 2005;50:91–106.

    PubMed  Google Scholar 

  91. Stiene-Martin A, Zhou R, Hauser KF. Regional, developmental, and cell cycle-dependent differences in mu, delta, and kappa-opioid receptor expression among cultured mouse astrocytes. Glia. 1998;22:249–59.

    CAS  PubMed  Google Scholar 

  92. Gurwell JA, Duncan MJ, Maderspach K, Stiene-Martin A, Elde RP, Hauser KF. kappa-opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, development, and the antiproliferative effect of opioids. Brain Res. 1996;737:175–87.

    CAS  PubMed  Google Scholar 

  93. Hauser KF, Stiene-Martin A, Mattson MP, Elde RP, Ryan SE, Godleske CC. mu-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca(2+)-dependent mechanism. Brain Res. 1996;720:191–203.

    CAS  PubMed  Google Scholar 

  94. Stiene-Martin A, Mattson MP, Hauser KF. Opiates selectively increase intracellular calcium in developing type-1 astrocytes: role of calcium in morphine-induced morphologic differentiation. Brain Res Dev Brain Res. 1993;76:189–96.

    CAS  PubMed  Google Scholar 

  95. Turchan-Cholewo J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, Knapp PE, et al. Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J Neurosci Res. 2008;86:2100–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. El-Hage N, Bruce-Keller AJ, Knapp PE, Hauser KF. CCL5/RANTES gene deletion attenuates opioid-induced increases in glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 Tat-exposed mice. J Neuroimmune Pharmacol. 2008;3:275–85.

    PubMed Central  PubMed  Google Scholar 

  97. Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, et al. HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia. 2009;57:194–206.

    PubMed Central  PubMed  Google Scholar 

  98. Buch SK, Khurdayan VK, Lutz SE, Knapp PE, El-Hage N, Hauser KF. Glial-restricted precursors: patterns of expression of opioid receptors and relationship to human immunodeficiency virus-1 Tat and morphine susceptibility in vitro. Neuroscience. 2007;146:1546–54.

    CAS  PubMed  Google Scholar 

  99. Khurdayan VK, Buch S, El-Hage N, Lutz SE, Goebel SM, Singh IN, et al. Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci. 2004;19:3171–82.

    PubMed  Google Scholar 

  100. Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE. Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res. 2012;10:435–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410:988–94.

    CAS  PubMed  Google Scholar 

  102. Persidsky Y, Gendelman HE. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leuk Biol. 2003;74:691–701.

    CAS  Google Scholar 

  103. Tyor WR, Wesselingh SL, Griffin JW, McArthur JC, Griffin DE. Unifying hypothesis for the pathogenesis of HIV-associated dementia complex, vacuolar myelopathy, and sensory neuropathy. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;9:379–88.

    CAS  PubMed  Google Scholar 

  104. Glass JD, Fedor H, Wesselingh SL, McArthur JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol. 1995;38:755–62.

    CAS  PubMed  Google Scholar 

  105. Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5:69–81.

    CAS  PubMed  Google Scholar 

  106. Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, et al. Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol. 1999;25:123–33.

    CAS  PubMed  Google Scholar 

  107. Arango JC, Simmonds P, Brettle RP, Bell JE. Does drug abuse influence the microglial response in AIDS and HIV encephalitis? Aids. 2004;18 Suppl 1:S69–74.

    PubMed  Google Scholar 

  108. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Neuropathol Appl Neurobiol. 2005;31:325–38.

    CAS  PubMed  Google Scholar 

  109. Masliah E. Mechanisms of synaptic pathology in Alzheimer’s disease. J Neural Transm Suppl. 1998;53:147–58.

    CAS  PubMed  Google Scholar 

  110. Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R. Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett. 1994;174:67–72.

    CAS  PubMed  Google Scholar 

  111. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ. Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am J Psychiatr. 2004;161:1848–55.

    PubMed  Google Scholar 

  112. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol. 1997;42:963–72.

    CAS  PubMed  Google Scholar 

  113. Everall IP, Everall IP. Neuronal damage - recent issues and implications for therapy. J Neurovirol. 2000;6 Suppl 1:S103–5.

    PubMed  Google Scholar 

  114. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, et al. Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol. 1999;9: 209–17.

    CAS  PubMed  Google Scholar 

  115. Agrawal L, Louboutin JP, Marusich E, Reyes BA, Van Bockstaele EJ, Strayer DS. Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res. 2010;1306:116–30.

    CAS  PubMed  Google Scholar 

  116. Gray F, Adle-Biassette H, Brion F, Ereau T, le Maner I, Levy V, et al. Neuronal apoptosis in human immunodeficiency virus infection. J Neurovirol. 2000;6 Suppl 1:S38–43.

    PubMed  Google Scholar 

  117. Gray F, Adle-Biassette H, Chretien F, Lorin dG, Force G, Keohane C. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol. 2001;20:146–55.

    CAS  PubMed  Google Scholar 

  118. Grovit-Ferbas K, Harris-White ME. Thinking about HIV: the intersection of virus, neuroinflammation and cognitive dysfunction. Immunologic Res. 2010;48:40–58.

    CAS  Google Scholar 

  119. Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A, et al. Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol. 2010;177:1397–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47 Suppl 1:33–46.

    CAS  PubMed  Google Scholar 

  121. Robinson TE, Kolb B. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse. 1999;33:160–2.

    CAS  PubMed  Google Scholar 

  122. Nath A. Pathobiology of human immunodeficiency virus dementia. Semin Neurol. 1999;19:113–27.

    CAS  PubMed  Google Scholar 

  123. Dreyer EB, Kaiser PK, Offermann JT, Lipton SA. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science. 1990;248:364–7.

    CAS  PubMed  Google Scholar 

  124. Haughey NJ, Holden CP, Nath A, Geiger JD. Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem. 1999;73:1363–74.

    CAS  PubMed  Google Scholar 

  125. Piller SC, Jans P, Gage PW, Jans DA. Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A. 1998;95:4595–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Mattson MP, Haughey NJ, Nath A. Cell death in HIV dementia. Cell Death Differ. 2005;12 Suppl 1:893–904 [Review] [173 refs].

    CAS  PubMed  Google Scholar 

  127. Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, et al. Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience. 2001;102:555–63.

    CAS  PubMed  Google Scholar 

  128. Zou S, Fitting S, Hahn YK, Welch SP, El-Hage N, Hauser KF, et al. Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at u-opioid receptor-expressing glia. Brain. 2011;134:12–31.

    Google Scholar 

  129. Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knapp PE, et al. Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J Neuroimmune Pharmacol. 2012;7:877–91.

    PubMed Central  PubMed  Google Scholar 

  130. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    CAS  PubMed  Google Scholar 

  131. Di CG, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.

    Google Scholar 

  132. Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol. 2008;8:460–71.

    CAS  PubMed  Google Scholar 

  133. Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW. Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol. 2009;175: 1148–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Gaskill PJ, Carvallo L, Eugenin EA, Berman JW. Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation. 2012;9:203.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Czub S, Koutsilieri E, Sopper S, Czub M, Stahl-Hennig C, Muller JG, et al. Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs. Acta Neuropathol. 2001;101:85–91.

    CAS  PubMed  Google Scholar 

  136. Czub S, Czub M, Koutsilieri E, Sopper S, Villinger F, Muller JG, et al. Modulation of simian immunodeficiency virus neuropathology by dopaminergic drugs. Acta Neuropathol. 2004;107:216–26.

    CAS  PubMed  Google Scholar 

  137. Dunfee R, Thomas ER, Gorry PR, Wang J, Ancuta P, Gabuzda D, et al. Mechanisms of HIV-1 neurotropism. Curr HIV Res. 2006;4:267–78.

    CAS  PubMed  Google Scholar 

  138. Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25:3418–24.

    CAS  PubMed  Google Scholar 

  139. Allen JB, Wong HL, Guyre PM, Simon GL, Wahl SM. Association of circulating receptor Fc gamma RIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-beta. J Clin Invest. 1991;87:1773–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Locher C, Vanham G, Kestens L, Kruger M, Ceuppens JL, Vingerhoets J, et al. Expression patterns of Fc gamma receptors, HLA-DR and selected adhesion molecules on monocytes from normal and HIV-infected individuals. Clin Exp Immunol. 1994;98:115–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Nockher WA, Bergmann L, Scherberich JE. Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol. 1994;98:369–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Dunne J, Feighery C, Whelan A. Beta-2-microglobulin, neopterin and monocyte Fc gamma receptors in opportunistic infections of HIV-positive patients. Br J Biomed Sci. 1996;53:263–9.

    CAS  PubMed  Google Scholar 

  143. Ancuta P, Weiss L, Haeffner-Cavaillon N. CD14 + CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics. Eur J Immunol. 2000;30:1872–83.

    CAS  PubMed  Google Scholar 

  144. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349:692–5.

    CAS  PubMed  Google Scholar 

  145. Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leuk Biol. 2000;67:699–704.

    CAS  Google Scholar 

  146. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ, Geissmann F, et al. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10:453–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE. A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron. 2009;64:133–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Peng F, Dhillon NK, Yao H, Zhu X, Williams R, Buch S, et al. Mechanisms of platelet-derived growth factor-mediated neuroprotection – implications in HIV dementia. Eur J Neurosci. 2008;28:1255–64.

    PubMed Central  PubMed  Google Scholar 

  149. Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD. STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood. 2008;111:2062–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26:1098–106.

    CAS  PubMed  Google Scholar 

  151. Mahajan SD, Schwartz SA, Aalinkeel R, Chawda RP, Sykes DE, Nair MP. Morphine modulates chemokine gene regulation in normal human astrocytes. Clin Immunol. 2005;115:323–32.

    CAS  PubMed  Google Scholar 

  152. Deeks SG. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med. 2009;17:118–23.

    PubMed  Google Scholar 

  153. Neuhaus J, Jacobs Jr DR, Baker JV, Calmy A, Duprez D, La RA, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201:1788–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Reingold J, Wanke C, Kotler D, Lewis C, Tracy R, Heymsfield S, et al. Association of HIV infection and HIV/HCV coinfection with C-reactive protein levels: the fat redistribution and metabolic change in HIV infection (FRAM) study. JAIDS. 2008;48:142–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Tien PC, Choi AI, Zolopa AR, Benson C, Tracy R, Scherzer R, et al. Inflammation and mortality in HIV-infected adults: analysis of the FRAM study cohort. JAIDS. 2010;55: 316–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Kaul M, Lipton SA. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J Neuroimmune Pharmacol. 2006;1:138–51.

    PubMed  Google Scholar 

  157. Kuller LH, Tracy R, Belloso W, De WS, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5:e203.

    PubMed Central  PubMed  Google Scholar 

  158. Gannon P, Khan MZ, Kolson DL. Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol. 2011;24:275–83.

    PubMed Central  PubMed  Google Scholar 

  159. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    CAS  PubMed  Google Scholar 

  160. Wallet MA, Rodriguez CA, Yin L, Saporta S, Chinratanapisit S, Hou W, et al. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. Aids. 2010;24:1281–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199:1177–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? Nat Immunol. 2006;7:235–9.

    CAS  PubMed  Google Scholar 

  163. Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol. 2007;81:8180–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Beignon AS, McKenna K, Skoberne M, Manches O, Dasilva I, Kavanagh DG, et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest. 2005;115:3265–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Baenziger S, Heikenwalder M, Johansen P, Schlaepfer E, Hofer U, Miller RC, et al. Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood. 2009;113:377–88.

    CAS  PubMed  Google Scholar 

  166. Hilburger ME, Adler MW, Truant AL, Meissler Jr JJ, Satishchandran V, Rogers TJ, et al. Morphine induces sepsis in mice. J Infect Dis. 1997;176:183–8.

    CAS  PubMed  Google Scholar 

  167. Peress NS, Perillo E, Seidman RJ. Glial transforming growth factor (TGF)-beta isotypes in multiple sclerosis: differential glial expression of TGF-beta 1, 2 and 3 isotypes in multiple sclerosis. J Neuroimmunol. 1996;71:115–23.

    CAS  PubMed  Google Scholar 

  168. Carrieri PB, Provitera V, De RT, Tartaglia G, Gorga F, Perrella O. Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity. Immunopharmacol Immunotoxicol. 1998;20:373–82.

    CAS  PubMed  Google Scholar 

  169. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7:612–8.

    CAS  PubMed  Google Scholar 

  170. Vitkovic L, Maeda S, Sternberg E. Anti-inflammatory cytokines: expression and action in the brain. [Review] [205 refs]. Neuroimmunomodulation. 2001;9:295–312.

    CAS  PubMed  Google Scholar 

  171. Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 1998;9:259–75.

    CAS  PubMed  Google Scholar 

  172. Barnum SR, Jones JL. Transforming growth factor-beta 1 inhibits inflammatory cytokine-induced C3 gene expression in astrocytes. J Immunol. 1994;152:765–73.

    CAS  PubMed  Google Scholar 

  173. Vodovotz Y, Geiser AG, Chesler L, Letterio JJ, Campbell A, Lucia MS, et al. Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med. 1996;183:2337–42.

    CAS  PubMed  Google Scholar 

  174. Park SK, Grzybicki D, Lin HL, Murphy S. Modulation of inducible nitric oxide synthase expression in astroglial cells. Neuropharmacology. 1994;33:1419–23.

    CAS  PubMed  Google Scholar 

  175. Bottner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem. 2000;75: 2227–40.

    CAS  PubMed  Google Scholar 

  176. Chao CC, Hu S, Peterson PK. Modulation of human microglial cell superoxide production by cytokines. J Leuk Biol. 1995;58:65–70.

    CAS  Google Scholar 

  177. Hu S, Sheng WS, Peterson PK, Chao CC. Cytokine modulation of murine microglial cell superoxide production. Glia. 1995;13:45–50.

    CAS  PubMed  Google Scholar 

  178. Meucci O, Miller RJ. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci. 1996;16:4080–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Chao CC, Molitor TW, Close K, Hu S, Peterson PK. Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures. Int J Immunopharmacol. 1993;15:447–53.

    CAS  PubMed  Google Scholar 

  180. Wahl SM, Hunt DA, Wakefield LM, Cartney-Francis N, Wahl LM, Roberts AB, et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A. 1987;84:5788–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Wiseman DM, Polverini PJ, Kamp DW, Leibovich SJ. Transforming growth factor-beta (TGF beta) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Comm. 1988;157:793–800.

    CAS  PubMed  Google Scholar 

  182. Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE. Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci U S A. 1993;90:4577–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Riddick CA, Serio KJ, Hodulik CR, Ring WL, Regan MS, Bigby TD. TGF-beta increases leukotriene C4 synthase expression in the monocyte-like cell line, THP-1. J Immunol. 1999;162:1101–7.

    CAS  PubMed  Google Scholar 

  184. Turner M, Chantry D, Feldmann M. Transforming growth factor beta induces the production of interleukin 6 by human peripheral blood mononuclear cells. Cytokine. 1990;2:211–6.

    CAS  PubMed  Google Scholar 

  185. Petito CK, Roberts B, Cantando JD, Rabinstein A, Duncan R. Hippocampal injury and alterations in neuronal chemokine co-receptor expression in patients with AIDS. J Neuropathol Exp Neurol. 2001;60:377–85.

    CAS  PubMed  Google Scholar 

  186. Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol. 2008;84:116–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia. 2003;42:139–48.

    PubMed  Google Scholar 

  188. Khan MZ, Brandimarti R, Shimizu S, Nicolai J, Crowe E, Meucci O. The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ. 2008;15:1663–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.

    CAS  PubMed  Google Scholar 

  190. Nicolai J, Burbassi S, Rubin J, Meucci O. CXCL12 inhibits expression of the NMDA receptor’s NR2B subunit through a histone deacetylase-dependent pathway contributing to neuronal survival. Cell Death Disease. 2010;1:e33.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Khan MZ, Brandimarti R, Patel JP, Huynh N, Wang J, Huang Z, et al. Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis. AIDS Res Hum Retrovirus. 2004;20:1063–71.

    CAS  Google Scholar 

  192. Toth PT, Ren D, Miller RJ. Regulation of CXCR4 receptor dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Therapeut. 2004;310:8–17.

    CAS  Google Scholar 

  193. Festa L, Meucci O. Effects of opiates and HIV proteins on neurons: the role of ferritin heavy chain and a potential for synergism. Curr HIV Res. 2012;10:453–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Patel JP, Sengupta R, Bardi G, Khan MZ, Mullen-Przeworski A, Meucci O. Modulation of neuronal CXCR4 by the micro-opioid agonist DAMGO. J Neurovirol. 2006;12:492–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Ferrer-Alcon M, Garcia-Fuster MJ, La HR, Garcia-Sevilla JA. Long-term regulation of signalling components of adenylyl cyclase and mitogen-activated protein kinase in the pre-frontal cortex of human opiate addicts. J Neurochem. 2004;90:220–30.

    CAS  PubMed  Google Scholar 

  196. Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, et al. Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci. 2004;114:1001–11.

    CAS  PubMed  Google Scholar 

  197. Liao D, Lin H, Law PY, Loh HH. Mu-opioid receptors modulate the stability of dendritic spines. Proc Natl Acad Sci U S A. 2005;102:1725–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Li Y, Wang H, Niu L, Zhou Y. Chronic morphine exposure alters the dendritic morphology of pyramidal neurons in visual cortex of rats. Neurosci Lett. 2007;418:227–31.

    CAS  PubMed  Google Scholar 

  199. Zheng H, Zeng Y, Chu J, Kam AY, Loh HH, Law PY. Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability. J Neurosci. 2010;30:8102–10.

    CAS  PubMed  Google Scholar 

  200. Tuttle DL, Harrison JK, Anders C, Sleasman JW, Goodenow MM. Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J Virol. 1998;72:4962–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Secchiero P, Zella D, Capitani S, Gallo RC, Zauli G. Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J Immunol. 1999;162:2427–31.

    CAS  PubMed  Google Scholar 

  202. Steele AD, Szabo I, Bednar F, Rogers TJ. Interactions between opioid and chemokine receptors: heterologous desensitization. Cytokine Growth Factor Rev. 2002;13:209–22.

    CAS  PubMed  Google Scholar 

  203. Grimm MC, Ben Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, et al. Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med. 1998;188:317–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Szabo I, Wetzel MA, Zhang N, Steele AD, Kaminsky DE, Chen C, et al. Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J Leuk Biol. 2003;74:1074–82.

    CAS  Google Scholar 

  205. Szabo I, Chen XH, Xin L, Adler MW, Howard OM, Oppenheim JJ, et al. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci U S A. 2002;99:10276–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Chen X, Geller EB, Rogers TJ, Adler MW. The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res. 2007;1153:52–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Chen X, Geller EB, Rogers TJ, Adler MW, Chen X, Geller EB, et al. Rapid heterologous desensitization of antinociceptive activity between mu or delta opioid receptors and chemokine receptors in rats. Drug Alcohol Depend. 2007;88:36–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995;63:289–302.

    CAS  PubMed  Google Scholar 

  209. Junger H, Sorkin LS. Nociceptive and inflammatory effects of subcutaneous TNFalpha. Pain. 2000;85:145–51.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Rogers Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, T.J. (2014). Drugs of Abuse and NeuroAIDS: Opiates. In: Peterson, P., Toborek, M. (eds) Neuroinflammation and Neurodegeneration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1071-7_22

Download citation

Publish with us

Policies and ethics