Skip to main content

Acute Right Ventricular Failure

  • Chapter
  • First Online:
The Right Ventricle in Health and Disease

Part of the book series: Respiratory Medicine ((RM))

Abstract

Acute right ventricular (RV) failure is a devastating syndrome caused by a variety of common diseases and conditions. Acute RV failure is caused by acute alterations in preload, afterload, and/or contractility. Ventricular interdependence and decreases in perfusion pressure make the RV particularly prone to acute failure. Histologic and biochemical correlates of RV failure are inflammation, oxidative stress, mitochondrial dysfunction, and cardiomyocyte death. The most common causes are pulmonary hypertension, pulmonary embolism, left heart failure, acute right-sided myocardial infarction, and sepsis as well as acute respiratory distress syndrome. Invasive hemodynamic assessment and echocardiography remain the most valuable methods to diagnose and manage acute RVF in critically ill patients. In more stable patients, cardiac MRI can be used as an alternative or complementary imaging method. These strategies are complemented by biomarker assessment, radiographic studies, and incorporation of clinical parameters into validated risk scores. The key principle in the management of acute RV failure focuses on treatment of the underlying etiology, complemented by supportive strategies focused on improving RV function via optimization of volume status and oxygenation, enhancing contractility, and reducing afterload. The latter two are achieved through use of vasopressors (e.g., norepinephrine), inotropes (e.g., dobutamine, milrinone), pulmonary vasodilators (e.g., inhaled nitric oxide, parenteral prostacyclins, phosphodiesterase type 5 inhibitors), and interventional or surgical therapies (e.g., extracorporeal membrane oxygenation). This chapter will provide a definition of acute RV failure and review its pathophysiology, etiologies, diagnosis and risk stratification as well as treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin BW, Schreiber DH, Liu G, et al. Therapy and outcomes in massive pulmonary embolism from the Emergency Medicine Pulmonary Embolism in the Real World Registry. Am J Emerg Med. 2012;30(9):1774–81.

    PubMed  Google Scholar 

  2. Lahm T, McCaslin CA, Wozniak TC, et al. Medical and surgical treatment of acute right ventricular failure. J Am Coll Cardiol. 2010;56(18):1435–46.

    PubMed  Google Scholar 

  3. Engstrom AE, Vis MM, Bouma BJ, et al. Right ventricular dysfunction is an independent predictor for mortality in ST-elevation myocardial infarction patients presenting with cardiogenic shock on admission. Eur J Heart Fail. 2010;12(3):276–82.

    PubMed  Google Scholar 

  4. Chan CM, Klinger JR. The right ventricle in sepsis. Clin Chest Med. 2008;29(4):661–76, ix.

    Google Scholar 

  5. Zamanian RT, Haddad F, Doyle RL, Weinacker AB. Management strategies for patients with pulmonary hypertension in the intensive care unit. Crit Care Med. 2007;35(9):2037–50.

    PubMed  Google Scholar 

  6. Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure-a work in progress and a plea for failure prevention. Pulm Circ. 2013;3(1):137–43.

    PubMed  PubMed Central  Google Scholar 

  7. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.

    PubMed  Google Scholar 

  8. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.

    PubMed  Google Scholar 

  9. Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123(16):1788–830.

    PubMed  Google Scholar 

  10. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.

    PubMed  Google Scholar 

  11. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.

    PubMed  CAS  Google Scholar 

  12. Vanni S, Viviani G, Baioni M, et al. Prognostic value of plasma lactate levels among patients with acute pulmonary embolism: the thrombo-embolism lactate outcome study. Ann Emerg Med. 2013;61(3):330–8.

    PubMed  Google Scholar 

  13. Omland T. Advances in congestive heart failure management in the intensive care unit: B-type natriuretic peptides in evaluation of acute heart failure. Crit Care Med. 2008;36(1 Suppl):S17–27.

    PubMed  CAS  Google Scholar 

  14. de Cal M, Haapio M, Cruz DN, et al. B-type natriuretic peptide in the critically ill with acute kidney injury. Int J Nephrol. 2011;2011:951629.

    PubMed  PubMed Central  Google Scholar 

  15. Burke MA, Cotts WG. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail Rev. 2007;12(1):23–36.

    PubMed  CAS  Google Scholar 

  16. Tonelli AR, Arelli V, Minai OA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;188(3):365–9.

    PubMed  PubMed Central  Google Scholar 

  17. Sztrymf B, Souza R, Bertoletti L, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010;35(6):1286–93.

    PubMed  CAS  Google Scholar 

  18. ten Wolde M, Sohne M, Quak E, Mac Gillavry MR, Buller HR. Prognostic value of echocardiographically assessed right ventricular dysfunction in patients with pulmonary embolism. Arch Intern Med. 2004;164(15):1685–9.

    PubMed  Google Scholar 

  19. Becattini C, Agnelli G. Acute pulmonary embolism: risk stratification in the emergency department. Intern Emerg Med. 2007;2(2):119–29.

    PubMed  CAS  Google Scholar 

  20. Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev. 2008;4(1):49–59.

    PubMed  PubMed Central  Google Scholar 

  21. Vieillard-Baron A, Price LC, Matthay MA. Acute cor pulmonale in ARDS. Intensive Care Med. 2013;39(10):1836–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Segers VF, Brutsaert DL, De Keulenaer GW. Pulmonary hypertension and right heart failure in heart failure with preserved left ventricular ejection fraction: pathophysiology and natural history. Curr Opin Cardiol. 2012;27(3):273–80.

    PubMed  Google Scholar 

  23. Alon D, Stein GY, Korenfeld R, Fuchs S. Predictors and outcomes of infection-related hospital admissions of heart failure patients. PLoS One. 2013;8(8):e72476.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Singanayagam A, Schembri S, Chalmers JD. Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013;10(2):81–9.

    PubMed  Google Scholar 

  25. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    PubMed  Google Scholar 

  26. Greyson CR. Pathophysiology of right ventricular failure. Crit Care Med. 2008;36(1 Suppl):S57–65.

    PubMed  Google Scholar 

  27. Naeije R. Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep. 2013;15:623–31.

    PubMed  CAS  Google Scholar 

  28. Kiely DG, Cargill RI, Lipworth BJ. Angiotensin II receptor blockade and effects on pulmonary hemodynamics and hypoxic pulmonary vasoconstriction in humans. Chest. 1996;110(3):698–703.

    PubMed  CAS  Google Scholar 

  29. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804.

    PubMed  CAS  Google Scholar 

  30. Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med. 2011;184(10):1114–24.

    PubMed  CAS  Google Scholar 

  32. Tan JL, Prati D, Gatzoulis MA, Gibson D, Henein MY, Li W. The right ventricular response to high afterload: comparison between atrial switch procedure, congenitally corrected transposition of the great arteries, and idiopathic pulmonary arterial hypertension. Am Heart J. 2007;153(4):681–8.

    PubMed  Google Scholar 

  33. Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure–from pathophysiology to new treatments. Intensive Care Med. 2004;30(2):185–96.

    PubMed  Google Scholar 

  34. Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16(1):13–8.

    PubMed  Google Scholar 

  35. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353(9162):1386–9.

    PubMed  CAS  Google Scholar 

  36. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992–1007.

    PubMed  Google Scholar 

  37. Dell’Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16(10):653–720.

    PubMed  Google Scholar 

  38. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30(2):167–87.

    PubMed  Google Scholar 

  39. Hsia HH, Haddad F. Pulmonary hypertension: a stage for ventricular interdependence? J Am Coll Cardiol. 2012;59(24):2203–5.

    PubMed  Google Scholar 

  40. Cucci AR, Lahm T. Resynchronization therapy for right ventricular failure: restoring harmony in left ventricular contractility. J Surg Res. 2013;185:493–5.

    PubMed  Google Scholar 

  41. Alpert JS. The effect of right ventricular dysfunction on left ventricular form and function. Chest. 2001;119(6):1632–3.

    PubMed  CAS  Google Scholar 

  42. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.

    PubMed  CAS  Google Scholar 

  43. Klima U, Guerrero JL, Vlahakes GJ. Contribution of the interventricular septum to maximal right ventricular function. Eur J Cardiothorac Surg. 1998;14(3):250–5.

    PubMed  CAS  Google Scholar 

  44. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71(3):473–80.

    PubMed  CAS  Google Scholar 

  45. Lopez-Candales A, Dohi K, Rajagopalan N, et al. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3:23.

    PubMed  PubMed Central  Google Scholar 

  46. Majos E, Dabrowski R, Szwed H. The right ventricle in patients with chronic heart failure and atrial fibrillation. Cardiol J. 2013;20(3):220–6.

    PubMed  Google Scholar 

  47. Kinch JW, Ryan TJ. Right ventricular infarction. N Engl J Med. 1994;330(17):1211–7.

    PubMed  CAS  Google Scholar 

  48. Marcus JT, Smeenk HG, Kuijer JP, Van der Geest RJ, Heethaar RM, Van Rossum AC. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr. 1999;23(4):567–76.

    PubMed  CAS  Google Scholar 

  49. Sharma GV, Sasahara AA. Regional and transmural myocardial blood flow studies in experimental pulmonary embolism. Prog Cardiovasc Dis. 1974;17(3):191–8.

    PubMed  CAS  Google Scholar 

  50. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.

    PubMed  CAS  Google Scholar 

  51. van Wolferen SA, Marcus JT, Westerhof N, et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J. 2008;29(1):120–7.

    PubMed  Google Scholar 

  52. Gold FL, Bache RJ. Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Evidence for subendocardial ischemia despite residual vasodilator reserve. Circ Res. 1982;51(2):196–204.

    PubMed  CAS  Google Scholar 

  53. Bogaard HJ, Natarajan R, Henderson SC, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    PubMed  Google Scholar 

  54. Goldstein JA, Barzilai B, Rosamond TL, Eisenberg PR, Jaffe AS. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation. 1990;82(2):359–68.

    PubMed  CAS  Google Scholar 

  55. Olsson KM, Nickel NP, Tongers J, Hoeper MM. Atrial flutter and fibrillation in patients with pulmonary hypertension. Int J Cardiol. 2013;167(5):2300–5.

    PubMed  Google Scholar 

  56. Watts JA, Zagorski J, Gellar MA, Stevinson BG, Kline JA. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. J Mol Cell Cardiol. 2006;41(2):296–307.

    PubMed  CAS  Google Scholar 

  57. Watts JA, Gellar MA, Obraztsova M, Kline JA, Zagorski J. Role of inflammation in right ventricular damage and repair following experimental pulmonary embolism in rats. Int J Exp Pathol. 2008;89(5):389–99.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Iwadate K, Doi M, Tanno K, et al. Right ventricular damage due to pulmonary embolism: examination of the number of infiltrating macrophages. Forensic Sci Int. 2003;134(2–3):147–53.

    PubMed  Google Scholar 

  59. Begieneman MP, van de Goot FR, van der Bilt IA, et al. Pulmonary embolism causes endomyocarditis in the human heart. Heart. 2008;94(4):450–6.

    PubMed  CAS  Google Scholar 

  60. Cau SB, Barato RC, Celes MR, Muniz JJ, Rossi MA, Tanus-Santos JE. Doxycycline prevents acute pulmonary embolism-induced mortality and right ventricular deformation in rats. Cardiovasc Drugs Ther. 2013;27(4):259–67.

    PubMed  CAS  Google Scholar 

  61. Dewachter C, Dewachter L, Rondelet B, et al. Activation of apoptotic pathways in experimental acute afterload-induced right ventricular failure. Crit Care Med. 2010;38(6):1405–13.

    PubMed  Google Scholar 

  62. Nordenholz KE, Mitchell AM, Kline JA. Direct comparison of the diagnostic accuracy of fifty protein biological markers of pulmonary embolism for use in the emergency department. Acad Emerg Med. 2008;15(9):795–9.

    PubMed  Google Scholar 

  63. Kline JA, Zeitouni R, Marchick MR, Hernandez-Nino J, Rose GA. Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am Heart J. 2008;156(2):308–14.

    PubMed  CAS  Google Scholar 

  64. Mitchell AM, Nordenholz KE, Kline JA. Tandem measurement of D-dimer and myeloperoxidase or C-reactive protein to effectively screen for pulmonary embolism in the emergency department. Acad Emerg Med. 2008;15(9):800–5.

    PubMed  Google Scholar 

  65. Jones AE, Watts JA, Debelak JP, Thornton LR, Younger JG, Kline JA. Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat. Am J Physiol Lung Cell Mol Physiol. 2003;284(6):L1072–81.

    PubMed  CAS  Google Scholar 

  66. Zagorski J, Wahl SM. Inhibition of acute peritoneal inflammation in rats by a cytokine-induced neutrophil chemoattractant receptor antagonist. J Immunol. 1997;159(3):1059–62.

    PubMed  CAS  Google Scholar 

  67. Zagorski J, Obraztsova M, Gellar MA, Kline JA, Watts JA. Transcriptional changes in right ventricular tissues are enriched in the outflow tract compared with the apex during chronic pulmonary embolism in rats. Physiol Genomics. 2009;39(1):61–71.

    PubMed  CAS  Google Scholar 

  68. Kaczynska A, Szulc M, Styczynski G, Kostrubiec M, Pacho R, Pruszczyk P. Right ventricle injury during acute pulmonary embolism leads to its remodeling. Int J Cardiol. 2008;125(1):120–1.

    PubMed  Google Scholar 

  69. Cingolani HE, Perez NG, Aiello EA, et al. Early signals after stretch leading to cardiac hypertrophy. Key role of NHE-1. Front Biosci. 2008;13:7096–114.

    PubMed  CAS  Google Scholar 

  70. Ahmad HA, Lu L, Ye S, Schwartz GG, Greyson CR. Calpain inhibition preserves talin and attenuates right heart failure in acute pulmonary hypertension. Am J Respir Cell Mol Biol. 2012;47(3):379–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Greyson CR, Schwartz GG, Lu L, et al. Calpain inhibition attenuates right ventricular contractile dysfunction after acute pressure overload. J Mol Cell Cardiol. 2008;44(1):59–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Zagorski J, Sanapareddy N, Gellar MA, Kline JA, Watts JA. Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. Physiol Genomics. 2008;34(1):101–11.

    PubMed  CAS  Google Scholar 

  73. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126(8):975–90.

    PubMed  Google Scholar 

  74. Hoeper MM, Barbera JA, Channick RN, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S85–96.

    PubMed  Google Scholar 

  75. McIntyre KM, Sasahara AA. Correlation of pulmonary photoscan and angiogram as measures of the severity of pulmonary embolic involvement. J Nucl Med. 1971;12(11):732–8.

    PubMed  CAS  Google Scholar 

  76. McIntyre KM, Sasahara AA. Hemodynamic and ventricular responses to pulmonary embolism. Prog Cardiovasc Dis. 1974;17(3):175–90.

    PubMed  CAS  Google Scholar 

  77. Wolfe MW, Lee RT, Feldstein ML, Parker JA, Come PC, Goldhaber SZ. Prognostic significance of right ventricular hypokinesis and perfusion lung scan defects in pulmonary embolism. Am Heart J. 1994;127(5):1371–5.

    PubMed  CAS  Google Scholar 

  78. Ribeiro A, Juhlin-Dannfelt A, Brodin LA, Holmgren A, Jorfeldt L. Pulmonary embolism: relation between the degree of right ventricle overload and the extent of perfusion defects. Am Heart J. 1998;135(5 Pt 1):868–74.

    PubMed  CAS  Google Scholar 

  79. Vedovati MC, Becattini C, Agnelli G, et al. Multidetector CT scan for acute pulmonary embolism: embolic burden and clinical outcome. Chest. 2012;142(6):1417–24.

    PubMed  Google Scholar 

  80. Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation. 2006;113(4):577–82.

    PubMed  Google Scholar 

  81. Laporte S, Mismetti P, Decousus H, et al. Clinical predictors for fatal pulmonary embolism in 15,520 patients with venous thromboembolism: findings from the Registro Informatizado de la Enfermedad TromboEmbolica venosa (RIETE) Registry. Circulation. 2008;117(13):1711–6.

    PubMed  Google Scholar 

  82. Pollack CV, Schreiber D, Goldhaber SZ, et al. Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPEROR (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J Am Coll Cardiol. 2011;57(6):700–6.

    PubMed  Google Scholar 

  83. Kline JA, Hernandez-Nino J, Rose GA, Norton HJ, Camargo Jr CA. Surrogate markers for adverse outcomes in normotensive patients with pulmonary embolism. Crit Care Med. 2006;34(11):2773–80.

    PubMed  Google Scholar 

  84. Stevinson BG, Hernandez-Nino J, Rose G, Kline JA. Echocardiographic and functional cardiopulmonary problems 6 months after first-time pulmonary embolism in previously healthy patients. Eur Heart J. 2007;28(20):2517–24.

    PubMed  Google Scholar 

  85. Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res. 2000;48(1):23–33.

    PubMed  CAS  Google Scholar 

  86. Kapsch DN, Metzler M, Silver D. Contributions of prostaglandin F2alpha and thromboxane A2 to the acute cardiopulmonary changes of pulmonary embolism. J Surg Res. 1981;30(5):522–9.

    PubMed  CAS  Google Scholar 

  87. Kline JA, Marchick MR, Hogg MM. Reduction in plasma haptoglobin in humans with acute pulmonary embolism causing tricuspid regurgitation. J Thromb Haemost. 2009;7(9):1597–9.

    PubMed  CAS  Google Scholar 

  88. Sousa-Santos O, Neto-Neves EM, Ferraz KC, Sertorio JT, Portella RL, Tanus-Santos JE. The antioxidant tempol decreases acute pulmonary thromboembolism-induced hemolysis and nitric oxide consumption. Thromb Res. 2013;132:578–83.

    PubMed  CAS  Google Scholar 

  89. Morris CR, Kato GJ, Poljakovic M, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 2005;294(1):81–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. McDonnell NJ, Percival V, Paech MJ. Amniotic fluid embolism: a leading cause of maternal death yet still a medical conundrum. Int J Obstet Anesth. 2013;22:329–36.

    PubMed  CAS  Google Scholar 

  91. Telford L, Harris J. A traumatic case of fat embolism. BMJ Case Rep. 2013;2013.

    Google Scholar 

  92. Abd El-Rahman AM, Lazzarotti AG, Cosottini M, Puglioli M. Pulmonary embolism caused by cement leakage during percutaneous vertebroplasty. A case report of successful conservative management. Neuroradiol J. 2012;25(4):481–5.

    PubMed  CAS  Google Scholar 

  93. Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–54.

    PubMed  Google Scholar 

  94. Fedullo P, Kerr KM, Kim NH, Auger WR. Chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(12):1605–13.

    PubMed  Google Scholar 

  95. Brookes CI, White PA, Bishop AJ, Oldershaw PJ, Redington AN, Moat NE. Validation of a new intraoperative technique to evaluate load-independent indices of right ventricular performance in patients undergoing cardiac operations. J Thorac Cardiovasc Surg. 1998;116(3):468–76.

    PubMed  CAS  Google Scholar 

  96. Brookes C, Ravn H, White P, Moeldrup U, Oldershaw P, Redington A. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100(7):761–7.

    PubMed  CAS  Google Scholar 

  97. Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation. 1995;91(6):1782–9.

    PubMed  CAS  Google Scholar 

  98. Patlolla B, Beygui R, Haddad F. Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol. 2013;28(2):223–33.

    PubMed  Google Scholar 

  99. Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.

    PubMed  Google Scholar 

  100. Santamore WP, Gray Jr LA. Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg. 1996;61(1):350–6.

    PubMed  CAS  Google Scholar 

  101. Moon MR, Castro LJ, DeAnda A, et al. Right ventricular dynamics during left ventricular assistance in closed-chest dogs. Ann Thorac Surg. 1993;56(1):54–66, discussion 66–7.

    PubMed  CAS  Google Scholar 

  102. Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol. 2013;61(12):1209–21.

    PubMed  Google Scholar 

  103. Mekontso Dessap A, Leon R, Habibi A, et al. Pulmonary hypertension and cor pulmonale during severe acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med. 2008;177(6):646–53.

    PubMed  Google Scholar 

  104. Bhalla M, Abboud MR, McLoud TC, et al. Acute chest syndrome in sickle cell disease: CT evidence of microvascular occlusion. Radiology. 1993;187(1):45–9.

    PubMed  CAS  Google Scholar 

  105. Mekontso Dessap A, Deux JF, Abidi N, et al. Pulmonary artery thrombosis during acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med. 2011;184(9):1022–9.

    PubMed  Google Scholar 

  106. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998;274(3 Pt 2):R577–95.

    PubMed  CAS  Google Scholar 

  107. Wort SJ, Ito M, Chou PC, et al. Synergistic induction of endothelin-1 by tumor necrosis factor alpha and interferon gamma is due to enhanced NF-kappaB binding and histone acetylation at specific kappaB sites. J Biol Chem. 2009;284(36):24297–305.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520.

    PubMed  CAS  Google Scholar 

  109. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94(4):1543–51.

    PubMed  Google Scholar 

  110. Bull TM, Clark B, McFann K, Moss M. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med. 2010;182(9):1123–8.

    PubMed  PubMed Central  Google Scholar 

  111. Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29(8):1551–5.

    PubMed  CAS  Google Scholar 

  112. Boissier F, Katsahian S, Razazi K, et al. Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med. 2013;39(10):1725–33.

    PubMed  Google Scholar 

  113. Lheritier G, Legras A, Caille A, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39(10):1734–42.

    PubMed  Google Scholar 

  114. Mekontso Dessap A, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35(11):1850–8.

    PubMed  PubMed Central  Google Scholar 

  115. Her C, Lees DE. Accurate assessment of right ventricular function in acute respiratory failure. Crit Care Med. 1993;21(11):1665–72.

    PubMed  CAS  Google Scholar 

  116. Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.

    PubMed  Google Scholar 

  117. Henning RJ. Effects of positive end-expiratory pressure on the right ventricle. J Appl Physiol. 1986;61(3):819–26.

    PubMed  CAS  Google Scholar 

  118. Cassidy SS, Eschenbacher WL, Robertson Jr CH, Nixon JV, Blomqvist G, Johnson Jr RL. Cardiovascular effects of positive-pressure ventilation in normal subjects. J Appl Physiol. 1979;47(2):453–61.

    PubMed  CAS  Google Scholar 

  119. Cassidy SS, Mitchell JH. Effects of positive pressure breathing on right and left ventricular preload and afterload. Fed Proc. 1981;40(8):2178–81.

    PubMed  CAS  Google Scholar 

  120. Morgan JA, Paone G, Nemeh HW, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transpl. 2013;32(4):398–403.

    Google Scholar 

  121. Maeder MT, Leet A, Ross A, Esmore D, Kaye DM. Changes in right ventricular function during continuous-flow left ventricular assist device support [corrected]. J Heart Lung Transpl. 2009;28(4):360–6.

    Google Scholar 

  122. Furukawa K, Motomura T, Nose Y. Right ventricular failure after left ventricular assist device implantation: the need for an implantable right ventricular assist device. Artif Organs. 2005;29(5):369–77.

    PubMed  Google Scholar 

  123. Fitzpatrick III JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137(4):971–7.

    PubMed  PubMed Central  Google Scholar 

  124. Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transpl. 2006;25(1):1–6.

    Google Scholar 

  125. Farrar DJ, Hill JD, Pennington DG, et al. Preoperative and postoperative comparison of patients with univentricular and biventricular support with the thoratec ventricular assist device as a bridge to cardiac transplantation. J Thorac Cardiovasc Surg. 1997;113(1):202–9.

    PubMed  CAS  Google Scholar 

  126. Kormos RL, Gasior TA, Kawai A, et al. Transplant candidate’s clinical status rather than right ventricular function defines need for univentricular versus biventricular support. J Thorac Cardiovasc Surg. 1996;111(4):773–82, discussion 782–3.

    PubMed  CAS  Google Scholar 

  127. Schultz JC, Hilliard AA, Cooper Jr LT, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009;84(11):1001–9.

    PubMed  PubMed Central  Google Scholar 

  128. Gaffney FA, Keller AM, Peshock RM, Lin JC, Firth BG. Pathophysiologic mechanisms of cardiac tamponade and pulsus alternans shown by echocardiography. Am J Cardiol. 1984;53(11):1662–6.

    PubMed  CAS  Google Scholar 

  129. O’Rourke RA, Dell’Italia LJ. Diagnosis and management of right ventricular myocardial infarction. Curr Probl Cardiol. 2004;29(1):6–47.

    PubMed  Google Scholar 

  130. Anderson NE, Ali MR, Simpson IJ. The clinical significance of right ventricular infarction. N Z Med J. 1981;94(691):174–6.

    PubMed  CAS  Google Scholar 

  131. Mehta SR, Eikelboom JW, Natarajan MK, et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37(1):37–43.

    PubMed  CAS  Google Scholar 

  132. Bowers TR, O’Neill WW, Grines C, Pica MC, Safian RD, Goldstein JA. Effect of reperfusion on biventricular function and survival after right ventricular infarction. N Engl J Med. 1998;338(14):933–40.

    PubMed  CAS  Google Scholar 

  133. Heidbuchel H, Hoogsteen J, Fagard R, et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J. 2003;24(16):1473–80.

    PubMed  Google Scholar 

  134. La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33(8):998–1006.

    PubMed  Google Scholar 

  135. Bittner HB, Chen EP, Milano CA, et al. Myocardial beta-adrenergic receptor function and high-energy phosphates in brain death–related cardiac dysfunction. Circulation. 1995;92(9 Suppl):II472–8.

    PubMed  CAS  Google Scholar 

  136. Stoica SC, Satchithananda DK, White PA, et al. Brain death leads to abnormal contractile properties of the human donor right ventricle. J Thorac Cardiovasc Surg. 2006;132(1):116–23.

    PubMed  Google Scholar 

  137. Piazza G, Goldhaber SZ. The acutely decompensated right ventricle: pathways for diagnosis and management. Chest. 2005;128(3):1836–52.

    PubMed  Google Scholar 

  138. Kelder JC, Cramer MJ, van Wijngaarden J, et al. The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation. 2011;124(25):2865–73.

    PubMed  Google Scholar 

  139. Le RJ, Fenstad ER, Maradit-Kremers H, et al. Syncope in adults with pulmonary arterial hypertension. J Am Coll Cardiol. 2011;58(8):863–7.

    PubMed  Google Scholar 

  140. Konstantinides S, Geibel A, Olschewski M, et al. Association between thrombolytic treatment and the prognosis of hemodynamically stable patients with major pulmonary embolism: results of a multicenter registry. Circulation. 1997;96(3):882–8.

    PubMed  CAS  Google Scholar 

  141. Campo A, Mathai SC, Le Pavec J, et al. Outcomes of hospitalisation for right heart failure in pulmonary arterial hypertension. Eur Respir J. 2011;38(2):359–67.

    PubMed  CAS  Google Scholar 

  142. Becattini C, Casazza F, Forgione C, et al. Acute pulmonary embolism: external validation of an integrated risk stratification model. Chest. 2013;144:1539–45.

    PubMed  Google Scholar 

  143. Sanchez O, Trinquart L, Caille V, et al. Prognostic factors for pulmonary embolism: the prep study, a prospective multicenter cohort study. Am J Respir Crit Care Med. 2010;181(2):168–73.

    PubMed  CAS  Google Scholar 

  144. Grifoni S, Olivotto I, Cecchini P, et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation. 2000;101(24):2817–22.

    PubMed  CAS  Google Scholar 

  145. Aujesky D, Obrosky DS, Stone RA, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med. 2005;172(8):1041–6.

    PubMed  PubMed Central  Google Scholar 

  146. Wicki J, Perrier A, Perneger TV, Bounameaux H, Junod AF. Predicting adverse outcome in patients with acute pulmonary embolism: a risk score. Thromb Haemost. 2000;84(4):548–52.

    PubMed  CAS  Google Scholar 

  147. Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122(2):156–63.

    PubMed  Google Scholar 

  148. Weintraub NL, Collins SP, Pang PS, et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association. Circulation. 2010;122(19):1975–96.

    PubMed  Google Scholar 

  149. Klok FA, Mos IC, Huisman MV. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med. 2008;178(4):425–30.

    PubMed  Google Scholar 

  150. Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31(1):202–8.

    PubMed  CAS  Google Scholar 

  151. Reesink HJ, Tulevski II, Marcus JT, et al. Brain natriuretic peptide as noninvasive marker of the severity of right ventricular dysfunction in chronic thromboembolic pulmonary hypertension. Ann Thorac Surg. 2007;84(2):537–43.

    PubMed  Google Scholar 

  152. Fijalkowska A, Kurzyna M, Torbicki A, et al. Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest. 2006;129(5):1313–21.

    PubMed  CAS  Google Scholar 

  153. Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122(2):164–72.

    PubMed  Google Scholar 

  154. Coutance G, Le Page O, Lo T, Hamon M. Prognostic value of brain natriuretic peptide in acute pulmonary embolism. Crit Care. 2008;12(4):R109.

    PubMed  PubMed Central  Google Scholar 

  155. Cavallazzi R, Nair A, Vasu T, Marik PE. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intensive Care Med. 2008;34(12):2147–56.

    PubMed  CAS  Google Scholar 

  156. Sanchez O, Trinquart L, Colombet I, et al. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review. Eur Heart J. 2008;29(12):1569–77.

    PubMed  Google Scholar 

  157. Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation. 2007;116(4):427–33.

    PubMed  CAS  Google Scholar 

  158. Heresi GA, Tang WH, Aytekin M, Hammel J, Hazen SL, Dweik RA. Sensitive cardiac troponin I predicts poor outcomes in pulmonary arterial hypertension. Eur Respir J. 2012;39(4):939–44.

    PubMed  CAS  Google Scholar 

  159. Haddad F, Peterson T, Fuh E, et al. Characteristics and outcome after hospitalization for acute right heart failure in patients with pulmonary arterial hypertension. Circ Heart Fail. 2011;4(6):692–9.

    PubMed  Google Scholar 

  160. Forfia PR, Mathai SC, Fisher MR, et al. Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(12):1364–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Scherz N, Labarere J, Mean M, Ibrahim SA, Fine MJ, Aujesky D. Prognostic importance of hyponatremia in patients with acute pulmonary embolism. Am J Respir Crit Care Med. 2010;182(9):1178–83.

    PubMed  PubMed Central  Google Scholar 

  162. Dellas C, Puls M, Lankeit M, et al. Elevated heart-type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. J Am Coll Cardiol. 2010;55(19):2150–7.

    PubMed  CAS  Google Scholar 

  163. Puls M, Dellas C, Lankeit M, et al. Heart-type fatty acid-binding protein permits early risk stratification of pulmonary embolism. Eur Heart J. 2007;28(2):224–9.

    PubMed  CAS  Google Scholar 

  164. Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351–60.

    PubMed  CAS  Google Scholar 

  165. Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98(3):342–50.

    PubMed  CAS  Google Scholar 

  166. Nickel N, Kempf T, Tapken H, et al. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(5):534–41.

    PubMed  CAS  Google Scholar 

  167. Lankeit M, Kempf T, Dellas C, et al. Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med. 2008;177(9):1018–25.

    PubMed  CAS  Google Scholar 

  168. Geibel A, Zehender M, Kasper W, Olschewski M, Klima C, Konstantinides SV. Prognostic value of the ECG on admission in patients with acute major pulmonary embolism. Eur Respir J. 2005;25(5):843–8.

    PubMed  CAS  Google Scholar 

  169. Daniel KR, Courtney DM, Kline JA. Assessment of cardiac stress from massive pulmonary embolism with 12-lead ECG. Chest. 2001;120(2):474–81.

    PubMed  CAS  Google Scholar 

  170. Toosi MS, Merlino JD, Leeper KV. Electrocardiographic score and short-term outcomes of acute pulmonary embolism. Am J Cardiol. 2007;100(7):1172–6.

    PubMed  Google Scholar 

  171. Iles S, Le Heron CJ, Davies G, Turner JG, Beckert LE. ECG score predicts those with the greatest percentage of perfusion defects due to acute pulmonary thromboembolic disease. Chest. 2004;125(5):1651–6.

    PubMed  Google Scholar 

  172. Aviram G, Rogowski O, Gotler Y, et al. Real-time risk stratification of patients with acute pulmonary embolism by grading the reflux of contrast into the inferior vena cava on computerized tomographic pulmonary angiography. J Thromb Haemost. 2008;6(9):1488–93.

    PubMed  CAS  Google Scholar 

  173. Jimenez D, Lobo JL, Monreal M, et al. Prognostic significance of multidetector CT in normotensive patients with pulmonary embolism: results of the protect study. Thorax. 2014;69:109–15.

    PubMed  Google Scholar 

  174. Tunariu N, Gibbs SJ, Win Z, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007;48(5):680–4.

    PubMed  Google Scholar 

  175. Brittain EL, Hemnes AR, Keebler M, Lawson M, Byrd III BF, Disalvo T. Right ventricular plasticity and functional imaging. Pulm Circ. 2012;2(3):309–26.

    PubMed  PubMed Central  Google Scholar 

  176. Kasper W, Konstantinides S, Geibel A, Tiede N, Krause T, Just H. Prognostic significance of right ventricular afterload stress detected by echocardiography in patients with clinically suspected pulmonary embolism. Heart. 1997;77(4):346–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Jardin F, Vieillard-Baron A. Monitoring of right-sided heart function. Curr Opin Crit Care. 2005;11(3):271–9.

    PubMed  Google Scholar 

  178. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166(10):1310–9.

    PubMed  Google Scholar 

  179. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(7):615–21.

    PubMed  PubMed Central  Google Scholar 

  180. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988–93.

    PubMed  Google Scholar 

  181. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. Am J Respir Crit Care Med. 1994;150(4):1158–68.

    PubMed  CAS  Google Scholar 

  182. Otero R, Oribe M, Ballaz A, et al. Echocardiographic assessment of pulmonary arterial pressure in the follow-up of patients with pulmonary embolism. Thromb Res. 2011;127(4):303–8.

    PubMed  CAS  Google Scholar 

  183. Kline JA, Steuerwald MT, Marchick MR, Hernandez-Nino J, Rose GA. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest. 2009;136(5):1202–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Sharifi M, Bay C, Skrocki L, Rahimi F, Mehdipour M. Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am J Cardiol. 2013;111(2):273–7.

    PubMed  Google Scholar 

  185. Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A, Jorfeldt L. Pulmonary embolism: one-year follow-up with echocardiography Doppler and five-year survival analysis. Circulation. 1999;99(10):1325–30.

    PubMed  CAS  Google Scholar 

  186. Jardin F, Dubourg O, Gueret P, Delorme G, Bourdarias JP. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10(6):1201–6.

    PubMed  CAS  Google Scholar 

  187. Oguzhan A, Abaci A, Eryol NK, Topsakal R, Seyfeli E. Colour tissue Doppler echocardiographic evaluation of right ventricular function in patients with right ventricular infarction. Cardiology. 2003;100(1):41–6.

    PubMed  Google Scholar 

  188. Antoni ML, Scherptong RW, Atary JZ, et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging. 2010;3(3):264–71.

    PubMed  Google Scholar 

  189. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    PubMed  Google Scholar 

  190. Rydman R, Soderberg M, Larsen F, Caidahl K, Alam M. Echocardiographic evaluation of right ventricular function in patients with acute pulmonary embolism: a study using tricuspid annular motion. Echocardiography. 2010;27(3):286–93.

    PubMed  Google Scholar 

  191. Badano LP, Ginghina C, Easaw J, et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11(1):27–37.

    PubMed  Google Scholar 

  192. Park JH, Park YS, Park SJ, et al. Midventricular peak systolic strain and Tei index of the right ventricle correlated with decreased right ventricular systolic function in patients with acute pulmonary thromboembolism. Int J Cardiol. 2008;125(3):319–24.

    PubMed  Google Scholar 

  193. Dentali F, Bertolini A, Nicolini E, et al. Evaluation of right ventricular function in patients with a previous episode of pulmonary embolism using tissue Doppler imaging. Intern Emerg Med. 2013;8:689–94.

    PubMed  Google Scholar 

  194. Arkles JS, Opotowsky AR, Ojeda J, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76.

    PubMed  Google Scholar 

  195. Platz E, Hassanein AH, Shah A, Goldhaber SZ, Solomon SD. Regional right ventricular strain pattern in patients with acute pulmonary embolism. Echocardiography. 2012;29(4):464–70.

    PubMed  Google Scholar 

  196. McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78(4):469–73.

    PubMed  CAS  Google Scholar 

  197. Casazza F, Bongarzoni A, Capozi A, Agostoni O. Regional right ventricular dysfunction in acute pulmonary embolism and right ventricular infarction. Eur J Echocardiogr. 2005;6(1):11–4.

    PubMed  Google Scholar 

  198. Chemla D, Castelain V, Herve P, Lecarpentier Y, Brimioulle S. Haemodynamic evaluation of pulmonary hypertension. Eur Respir J. 2002;20(5):1314–31.

    PubMed  CAS  Google Scholar 

  199. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006;48(12):2546–52.

    PubMed  Google Scholar 

  200. Keogh AM, Mayer E, Benza RL, et al. Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S67–77.

    PubMed  Google Scholar 

  201. La Vecchia L, Varotto L, Zanolla L, Spadaro GL, Fontanelli A. Right ventricular function predicts transplant-free survival in idiopathic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown). 2006;7(9):706–10.

    Google Scholar 

  202. Badesch DB, Champion HC, Sanchez MA, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S55–66.

    PubMed  Google Scholar 

  203. Ryan JJ, Rich JD, Thiruvoipati T, Swamy R, Kim GH, Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163(4):589–94.

    PubMed  Google Scholar 

  204. Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.

    PubMed  Google Scholar 

  205. Matthay MA. Invasive hemodynamic monitoring in critically ill patients. Clin Chest Med. 1983;4(2):233–49.

    PubMed  CAS  Google Scholar 

  206. Vender JS, Franklin M. Hemodynamic assessment of the critically ill patient. Int Anesthesiol Clin. 2004;42(1):31–58.

    PubMed  Google Scholar 

  207. Daudel F, Tuller D, Krahenbuhl S, Jakob SM, Takala J. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Crit Care. 2010;14(3):R122.

    PubMed  PubMed Central  Google Scholar 

  208. Michard F, Richards G, Biais M, Lopes M, Auler JO. Using pulse pressure variation or stroke volume variation to diagnose right ventricular failure? Crit Care. 2010;14(6):451, author reply 451.

    PubMed  PubMed Central  Google Scholar 

  209. Wyler von Ballmoos M, Takala J, Roeck M, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care. 2010;14(3):R111.

    Google Scholar 

  210. Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.

    PubMed  Google Scholar 

  211. Rich JD, Archer SL, Rich S. Noninvasive cardiac output measurements in patients with pulmonary hypertension. Eur Respir J. 2013;42(1):125–33.

    PubMed  Google Scholar 

  212. Tongers J, Schwerdtfeger B, Klein G, et al. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J. 2007;153(1):127–32.

    PubMed  Google Scholar 

  213. Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL. Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute right ventricular dysfunction. J Am Coll Cardiol. 1990;16(1):181–9.

    PubMed  CAS  Google Scholar 

  214. Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.

    PubMed  CAS  Google Scholar 

  215. Groenveld HF, Januzzi JL, Damman K, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27.

    PubMed  Google Scholar 

  216. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    PubMed  CAS  Google Scholar 

  217. Amer M, Adomaityte J, Qayyum R. Continuous infusion versus intermittent bolus furosemide in ADHF: an updated meta-analysis of randomized control trials. J Hosp Med. 2012;7(3):270–5.

    PubMed  Google Scholar 

  218. Ng TM, Konopka E, Hyderi AF, et al. Comparison of bumetanide- and metolazone-based diuretic regimens to furosemide in acute heart failure. J Cardiovasc Pharmacol Ther. 2013;18(4):345–53.

    PubMed  CAS  Google Scholar 

  219. Maron BA, Zhang YY, White K, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  220. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15(3):277–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  221. de Man FS, Tu L, Handoko ML, et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(8):780–9.

    PubMed  Google Scholar 

  222. Bart BA, Goldsmith SR, Lee KL, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304.

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.

    PubMed  PubMed Central  Google Scholar 

  224. Vieillard-Baron A, Jardin F. Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care. 2003;9(1):15–21.

    PubMed  Google Scholar 

  225. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory Distress syndrome. The Acute Respiratory Distress Syndrome Network. New Engl J Med. 2000;342(18):1301–8.

    Google Scholar 

  226. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6.

    PubMed  Google Scholar 

  227. Guerin C, Reignier J, Richard JC. Prone positioning in the acute respiratory distress syndrome. N Engl J Med. 2013;369(10):980–1.

    PubMed  CAS  Google Scholar 

  228. Fuehner T, Kuehn C, Hadem J, et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care Med. 2012;185(7):763–8.

    PubMed  Google Scholar 

  229. Wiesner O, Hadem J, Sommer W, Kuhn C, Welte T, Hoeper MM. Extracorporeal membrane oxygenation in a nonintubated patient with acute respiratory distress syndrome. Eur Respir J. 2012;40(5):1296–8.

    PubMed  Google Scholar 

  230. Miller AC, Gladwin MT. Pulmonary complications of sickle cell disease. Am J Respir Crit Care Med. 2012;185(11):1154–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  231. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction–2002: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Unstable Angina). Circulation. 2002;106(14):1893–900.

    PubMed  Google Scholar 

  232. Wan S, Quinlan DJ, Agnelli G, Eikelboom JW. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: a meta-analysis of the randomized controlled trials. Circulation. 2004;110(6):744–9.

    PubMed  CAS  Google Scholar 

  233. Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med. 2002;347(15):1143–50.

    PubMed  CAS  Google Scholar 

  234. Konstantinides S. Tenecteplase for patients with submassive pulmonary embolism. 2013.

    Google Scholar 

  235. Fasullo S, Scalzo S, Maringhini G, et al. Six-month echocardiographic study in patients with submassive pulmonary embolism and right ventricle dysfunction: comparison of thrombolysis with heparin. Am J Med Sci. 2011;341(1):33–9.

    PubMed  Google Scholar 

  236. Kline JA. Randomized trial of tenecteplase or placebo with low molecular weight heparin for acute submassive pulmonary embolism: assessment of patient oriented cardiopulmonary outcomes at three months. J Am Coll Cardiol. 2013;61(10):E2074.

    Google Scholar 

  237. Kline JA KC, Courtney DM et al. Randomized trial of tenecteplase or placebo with low molecular weight heparin for acute submassive pulmonary embolism: assessment of patient-oriented cardiopulmonary outcomes at three months. J Am Coll Cardiol. 2013;61(10 S).

    Google Scholar 

  238. Bradford KK, Deb B, Pearl RG. Combination therapy with inhaled nitric oxide and intravenous dobutamine during pulmonary hypertension in the rabbit. J Cardiovasc Pharmacol. 2000;36(2):146–51.

    PubMed  CAS  Google Scholar 

  239. Vizza CD, Rocca GD, Roma AD, et al. Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit Care. 2001;5(6):355–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  240. Kerbaul F, Rondelet B, Motte S, et al. Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med. 2004;32(4):1035–40.

    PubMed  CAS  Google Scholar 

  241. Chen EP, Bittner HB, Davis Jr RD, Van Trigt III P. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg. 1997;63(3):814–21.

    PubMed  CAS  Google Scholar 

  242. Hentschel T, Yin N, Riad A, et al. Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology. 2007;106(1):124–31.

    PubMed  CAS  Google Scholar 

  243. Solina A, Papp D, Ginsberg S, et al. A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J Cardiothorac Vasc Anesth. 2000;14(1):12–7.

    PubMed  CAS  Google Scholar 

  244. Khazin V, Kaufman Y, Zabeeda D, et al. Milrinone and nitric oxide: combined effect on pulmonary artery pressures after cardiopulmonary bypass in children. J Cardiothorac Vasc Anesth. 2004;18(2):156–9.

    PubMed  CAS  Google Scholar 

  245. Innes CA, Wagstaff AJ. Levosimendan: a review of its use in the management of acute decompensated heart failure. Drugs. 2003;63(23):2651–71.

    PubMed  CAS  Google Scholar 

  246. Gruhn N, Nielsen-Kudsk JE, Theilgaard S, Bang L, Olesen SP, Aldershvile J. Coronary vasorelaxant effect of levosimendan, a new inodilator with calcium-sensitizing properties. J Cardiovasc Pharmacol. 1998;31(5):741–9.

    PubMed  CAS  Google Scholar 

  247. Kerbaul F, Rondelet B, Demester JP, et al. Effects of levosimendan versus dobutamine on pressure load-induced right ventricular failure. Crit Care Med. 2006;34(11):2814–9.

    PubMed  CAS  Google Scholar 

  248. Missant C, Rex S, Segers P, Wouters PF. Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med. 2007;35(3):707–15.

    PubMed  CAS  Google Scholar 

  249. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    PubMed  Google Scholar 

  250. Angle MR, Molloy DW, Penner B, Jones D, Prewitt RM. The cardiopulmonary and renal hemodynamic effects of norepinephrine in canine pulmonary embolism. Chest. 1989;95(6):1333–7.

    PubMed  CAS  Google Scholar 

  251. Apitz C, Honjo O, Friedberg MK, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60(1):17–23.

    PubMed  Google Scholar 

  252. Belenkie I, Horne SG, Dani R, Smith ER, Tyberg JV. Effects of aortic constriction during experimental acute right ventricular pressure loading. Further insights into diastolic and systolic ventricular interaction. Circulation. 1995;92(3):546–54.

    PubMed  CAS  Google Scholar 

  253. Braun EB, Palin CA, Hogue CW. Vasopressin during spinal anesthesia in a patient with primary pulmonary hypertension treated with intravenous epoprostenol. Anesth Analg. 2004;99(1):36–7.

    PubMed  CAS  Google Scholar 

  254. Price LC, Forrest P, Sodhi V, et al. Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth. 2007;99(4):552–5.

    PubMed  CAS  Google Scholar 

  255. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353(25):2683–95.

    PubMed  CAS  Google Scholar 

  256. Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide. 2013;35:175–85.

    PubMed  CAS  Google Scholar 

  257. Rossaint R, Gerlach H, Schmidt-Ruhnke H, et al. Efficacy of inhaled nitric oxide in patients with severe ARDS. Chest. 1995;107(4):1107–15.

    PubMed  CAS  Google Scholar 

  258. Kaisers U, Busch T, Deja M, Donaubauer B, Falke KJ. Selective pulmonary vasodilation in acute respiratory distress syndrome. Crit Care Med. 2003;31(4 Suppl):S337–42.

    PubMed  CAS  Google Scholar 

  259. Meldrum DR, Shames BD, Meng X, et al. Nitric oxide downregulates lung macrophage inflammatory cytokine production. Ann Thorac Surg. 1998;66(2):313–7.

    PubMed  CAS  Google Scholar 

  260. Bhorade S, Christenson J, O’Connor M, Lavoie A, Pohlman A, Hall JB. Response to inhaled nitric oxide in patients with acute right heart syndrome. Am J Respir Crit Care Med. 1999;159(2):571–9.

    PubMed  CAS  Google Scholar 

  261. George I, Xydas S, Topkara VK, et al. Clinical indication for use and outcomes after inhaled nitric oxide therapy. Ann Thorac Surg. 2006;82(6):2161–9.

    PubMed  Google Scholar 

  262. Ardehali A, Hughes K, Sadeghi A, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.

    PubMed  CAS  Google Scholar 

  263. Fattouch K, Sbraga F, Bianco G, et al. Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J Card Surg. 2005;20(2):171–6.

    PubMed  Google Scholar 

  264. Kline JA, Hernandez J, Garrett JS, Jones AE. Pilot study of a protocol to administer inhaled nitric oxide to treat severe acute submassive pulmonary embolism. Emerg Med J. 2014;31:459–62.

    PubMed  Google Scholar 

  265. Christenson J, Lavoie A, O’Connor M, Bhorade S, Pohlman A, Hall JB. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med. 2000;161(5):1443–9.

    PubMed  CAS  Google Scholar 

  266. Badesch DB, McLaughlin VV, Delcroix M, et al. Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(12 Suppl S):56S–61.

    PubMed  CAS  Google Scholar 

  267. Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    PubMed  CAS  Google Scholar 

  268. Kooter AJ, Ijzerman RG, Kamp O, Boonstra AB, Smulders YM. No effect of epoprostenol on right ventricular diameter in patients with acute pulmonary embolism: a randomized controlled trial. BMC Pulm Med. 2010;10:18.

    PubMed  PubMed Central  Google Scholar 

  269. Rich S, McLaughlin VV. The effects of chronic prostacyclin therapy on cardiac output and symptoms in primary pulmonary hypertension. J Am Coll Cardiol. 1999;34(4):1184–7.

    PubMed  CAS  Google Scholar 

  270. Kerbaul F, Brimioulle S, Rondelet B, Dewachter C, Hubloue I, Naeije R. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med. 2007;175(8):846–50.

    PubMed  CAS  Google Scholar 

  271. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334(5):296–301.

    PubMed  CAS  Google Scholar 

  272. Badesch DB, Abman SH, Ahearn GS, et al. Medical therapy for pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):35S–62.

    PubMed  Google Scholar 

  273. Gomberg-Maitland M, Preston IR. Prostacyclin therapy for pulmonary arterial hypertension: new directions. Semin Respir Crit Care Med. 2005;26(4):394–401.

    PubMed  Google Scholar 

  274. Haraldsson A, Kieler-Jensen N, Ricksten SE. Inhaled prostacyclin for treatment of pulmonary hypertension after cardiac surgery or heart transplantation: a pharmacodynamic study. J Cardiothorac Vasc Anesth. 1996;10(7):864–8.

    PubMed  CAS  Google Scholar 

  275. Khan TA, Schnickel G, Ross D, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24.

    PubMed  CAS  Google Scholar 

  276. Rex S, Schaelte G, Metzelder S, et al. Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand. 2008;52(1):65–72.

    PubMed  CAS  Google Scholar 

  277. De Wet CJ, Affleck DG, Jacobsohn E, et al. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg. 2004;127(4):1058–67.

    PubMed  Google Scholar 

  278. Theodoraki K, Rellia P, Thanopoulos A, et al. Inhaled iloprost controls pulmonary hypertension after cardiopulmonary bypass. Can J Anaesth. 2002;49(9):963–7.

    PubMed  Google Scholar 

  279. Winterhalter M, Simon A, Fischer S, et al. Comparison of inhaled iloprost and nitric oxide in patients with pulmonary hypertension during weaning from cardiopulmonary bypass in cardiac surgery: a prospective randomized trial. J Cardiothorac Vasc Anesth. 2008;22(3):406–13.

    PubMed  CAS  Google Scholar 

  280. Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346(12):896–903.

    PubMed  CAS  Google Scholar 

  281. Trachte AL, Lobato EB, Urdaneta F, et al. Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg. 2005;79(1):194–7, discussion 194–7.

    PubMed  Google Scholar 

  282. Lepore JJ, Maroo A, Pereira NL, et al. Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am J Cardiol. 2002;90(6):677–80.

    PubMed  CAS  Google Scholar 

  283. Lepore JJ, Maroo A, Bigatello LM, et al. Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest. 2005;127(5):1647–53.

    PubMed  CAS  Google Scholar 

  284. Ghofrani HA, Wiedemann R, Rose F, et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med. 2002;136(7):515–22.

    PubMed  CAS  Google Scholar 

  285. Nagamine J, Hill LL, Pearl RG. Combined therapy with zaprinast and inhaled nitric oxide abolishes hypoxic pulmonary hypertension. Crit Care Med. 2000;28(7):2420–4.

    PubMed  CAS  Google Scholar 

  286. Lee JE, Hillier SC, Knoderer CA. Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med. 2008;23(5):329–34.

    PubMed  Google Scholar 

  287. Fung E, Fiscus RR, Yim AP, Angelini GD, Arifi AA. The potential use of type-5 phosphodiesterase inhibitors in coronary artery bypass graft surgery. Chest. 2005;128(4):3065–73.

    PubMed  CAS  Google Scholar 

  288. Urdaneta F, Lobato EB, Beaver T, et al. Treating pulmonary hypertension post cardiopulmonary bypass in pigs: milrinone vs. sildenafil analog. Perfusion. 2008;23(2):117–25.

    PubMed  CAS  Google Scholar 

  289. Neto-Neves EM, Dias-Junior CA, Uzuelli JA, et al. Sildenafil improves the beneficial hemodynamic effects exerted by atorvastatin during acute pulmonary thromboembolism. Eur J Pharmacol. 2011;670(2–3):554–60.

    PubMed  CAS  Google Scholar 

  290. Dias-Junior CA, Neto-Neves EM, Montenegro MF, Tanus-Santos JE. Hemodynamic effects of inducible nitric oxide synthase inhibition combined with sildenafil during acute pulmonary embolism. Nitric Oxide. 2010;23(4):284–8.

    PubMed  CAS  Google Scholar 

  291. Bonatti HJ, Harris T, Bauer T, et al. Transfemoral catheter thrombolysis and use of sildenafil in acute massive pulmonary embolism. J Cardiothorac Vasc Anesth. 2010;24(6):980–4.

    PubMed  CAS  Google Scholar 

  292. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.

    PubMed  CAS  Google Scholar 

  293. Philip A, Ramchandani S, Dorrance K, Dorrance C. Sildenafil-induced thrombocytopenia. Ann Intern Med. 2008;149(6):437–9.

    PubMed  Google Scholar 

  294. Ghofrani HA, Galie N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40.

    PubMed  CAS  Google Scholar 

  295. Ghofrani HA, D’Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.

    PubMed  CAS  Google Scholar 

  296. Conrad SA, Rycus PT, Dalton H. Extracorporeal Life Support Registry report 2004. ASAIO J. 2005;51(1):4–10.

    PubMed  Google Scholar 

  297. Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365(20):1905–14.

    PubMed  CAS  Google Scholar 

  298. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63.

    PubMed  Google Scholar 

  299. Hoeper MM, Wiesner O, Hadem J, et al. Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Intensive Care Med. 2013;39(11):2056–7.

    PubMed  Google Scholar 

  300. de Perrot M, Granton JT, McRae K, et al. Impact of extracorporeal life support on outcome in patients with idiopathic pulmonary arterial hypertension awaiting lung transplantation. J Heart Lung Transpl. 2011;30(9):997–1002.

    Google Scholar 

  301. Hoeper MM, Welte T. Extracorporeal lung assist: more than kicking a dead horse? Eur Respir J. 2008;32(6):1431–2.

    PubMed  CAS  Google Scholar 

  302. Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8.

    PubMed  CAS  Google Scholar 

  303. Watts JA, Marchick MR, Kline JA. Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J Card Fail. 2010;16(3):250–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Cucci M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cucci, A.R., Kline, J.A., Lahm, T. (2015). Acute Right Ventricular Failure. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics