Skip to main content

The Pathobiology of Chronic Right Ventricular Failure

  • Chapter
  • First Online:
The Right Ventricle in Health and Disease

Abstract

The final and therapeutically highly challenging chapter in the medical history of patients with severe pulmonary hypertension is right heart dysfunction and right ventricular failure (RVF), frequently leading to the death of the patient. Because RVF is potentially preventable and reversible, a deep understanding of the cellular and molecular mechanisms of chronic RVF will be necessary in order to develop treatment strategies that target RV function independent of the traditional pulmonary artery pressure treatment target. In this chapter we propose that there are intrinsic and extrinsic mechanisms that contribute to the syndrome of chronic RVF. We review mechanical concepts of RV dysfunction, the contribution of the “sick lung circulation” to the molecular pathobiology of chronic RVF, capillary rarefaction and capillary endothelial cell dysfunction, and RV fibrosis. The mechanisms of beta-adrenergic receptor blockade in chronic RVF are introduced, and we recommend that thought should be given to the possibility that novel antiproliferative drugs, developed for the treatment of severe pulmonary hypertension, may have the potential to damage the pressure-overloaded and stressed RV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voelkel NF, Reeves JT. Primary pulmonary hypertension. In: Moser KM, editor. Pulmonary vascular diseases. New York: Marcel Dekker; 1979. p. 573–619.

    Google Scholar 

  2. D’Alonzo GE, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  PubMed  Google Scholar 

  3. Campo A, et al. Hemodynamic predictors of survival in scleroderma-related pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182(2):252–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howard LS. Prognostic factors in pulmonary arterial hypertension: assessing the course of the disease. Eur Respir Rev. 2011;20(122):236–42.

    Article  PubMed  CAS  Google Scholar 

  5. van de Veerdonk MC, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9.

    Article  PubMed  Google Scholar 

  6. Haddad F, et al. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

  7. Maron BA. Targeting neurohumoral signaling to treat pulmonary hypertension: the right ventricle coming into focus. Circulation. 2012;126(24):2806–8.

    Article  PubMed  Google Scholar 

  8. Erzurum S, et al. Strategic plan for lung vascular research: an NHLBI-ORDR workshop report. Am J Respir Crit Care Med. 2010;182(12):1554–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hunt SA, et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–90.

    Article  PubMed  Google Scholar 

  10. Quaife RA, et al. Right ventricular phenotypic characteristics in subjects with primary pulmonary hypertension or idiopathic dilated cardiomyopathy. J Card Fail. 1999;5(1):46–54.

    Article  PubMed  CAS  Google Scholar 

  11. Abraham MR, et al. Angiotensin-converting enzyme genotype modulates pulmonary function and exercise capacity in treated patients with congestive stable heart failure. Circulation. 2002;106(14):1794–9.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Z, Chesler NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ. 2011;1(2): 212–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zimmerman HA. The coronary circulation in patients with severe emphysema, cor pulmonale, cyanotic congenital heart disease, and severe anemia. Dis Chest. 1952;22(3):269–73.

    Article  PubMed  CAS  Google Scholar 

  14. van Wolferen SA, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7.

    Article  PubMed  Google Scholar 

  15. van Wolferen SA, et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J. 2008;29(1):120–7.

    Article  PubMed  Google Scholar 

  16. Vogel-Claussen J, et al. Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology. 2011;258(1):119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quaife RA, et al. Importance of right ventricular end-systolic regional wall stress in idiopathic pulmonary arterial hypertension: a new method for estimation of right ventricular wall stress. Eur J Med Res. 2006;11(5):214–20.

    PubMed  Google Scholar 

  18. Sachdev A, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1299–309.

    Article  PubMed  Google Scholar 

  19. Coghlan C, Hoffman J. Leonardo da Vinci’s flights of the mind must continue: cardiac architecture and the fundamental relation of form and function revisited. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S4–17.

    Article  PubMed  Google Scholar 

  20. Sanchez-Quintana D, et al. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec. 1995;243(4):483–95.

    Article  PubMed  CAS  Google Scholar 

  21. Chen J, et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2005;289(5):H1898–907.

    Article  PubMed  CAS  Google Scholar 

  22. Savadjiev P, et al. Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc Natl Acad Sci U S A. 2012;109(24):9248–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Buckberg G, et al. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118(24):2571–87.

    Article  PubMed  Google Scholar 

  24. Baicu CF, et al. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing. Am J Physiol Heart Circ Physiol. 2012;303(9):H1128–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Chugh SS, et al. Genetic basis for chamber-specific ventricular phenotypes in the rat infarct model. Cardiovasc Res. 2003;57(2):477–85.

    Article  PubMed  CAS  Google Scholar 

  26. Tabibiazar R, et al. Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circ Res. 2003;93(12):1193–201.

    Article  PubMed  CAS  Google Scholar 

  27. Drake JI, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol. 2011;194(3):355–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Leenders JJ, Pinto YM, Creemers EE. Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol. 2011;51(2):156–67.

    Article  PubMed  CAS  Google Scholar 

  30. Augustus AS, et al. Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism. Cell Cycle. 2008;7(16):2509–18.

    Article  PubMed  CAS  Google Scholar 

  31. Cruz JA, et al. Chronic hypoxia induces right heart failure in caveolin-1-/- mice. Am J Physiol Heart Circ Physiol. 2012;302(12):H2518–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fisch S, et al. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2007;104(17):7074–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Cao DJ, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A. 2011;108(10):4123–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Faber MJ, et al. Time dependent changes in cytoplasmic proteins of the right ventricle during prolonged pressure overload. J Mol Cell Cardiol. 2007;43(2):197–209.

    Article  PubMed  CAS  Google Scholar 

  35. Cavasin MA, et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res. 2012; 110(5):739–48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Zhao L, et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation. 2012;126(4):455–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Bogaard HJ, et al. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med. 2011;183(10):1402–10.

    Article  PubMed  CAS  Google Scholar 

  38. McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol. 2012;52:303–19.

    Article  PubMed  CAS  Google Scholar 

  39. Gammoh N, et al. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci U S A. 2012;109(17):6561–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lee JY, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010;29(5):969–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J. 2008;72(Suppl A):A13–6.

    Article  PubMed  Google Scholar 

  42. Ling H, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119(5):1230–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Depre C, et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci U S A. 2001;98(16):9336–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  45. Takeda N, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Alfaro MP, et al. A physiological role for connective tissue growth factor in early wound healing. Lab Invest. 2013;93(1):81–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Kim YS, et al. BAY 11-7082, a nuclear factor-kappaB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. Int Heart J. 2010;51(5):348–53.

    Article  PubMed  CAS  Google Scholar 

  48. Wei C, et al. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013;228(7):1433–42.

    Article  PubMed  CAS  Google Scholar 

  49. Duisters RF, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104(2):170–8, 6p following 178.

    Article  PubMed  CAS  Google Scholar 

  50. Matkovich SJ, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106(1):166–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Aranguiz-Urroz P, et al. Beta(2)-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim Biophys Acta. 2011;1812(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  52. Pchejetski D, et al. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J. 2012;33(18):2360–9.

    Article  PubMed  CAS  Google Scholar 

  53. Helske S, et al. Transcardiac gradients of circulating apelin: extraction by normal hearts vs. release by hearts failing due to pressure overload. J Appl Physiol. 2010;109(6):1744–8.

    Article  PubMed  CAS  Google Scholar 

  54. Zeisberg EM, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61.

    Article  PubMed  CAS  Google Scholar 

  55. Medici D, Olsen BR. Transforming blood vessels into bone. Cell Cycle. 2011;10(3):362–3.

    Article  PubMed  CAS  Google Scholar 

  56. Medici D, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Medici D, Kalluri R. Endothelial–mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22(5–6):379–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Zhu H, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Nemchenko A, et al. Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol. 2011;51(4):584–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Yan L, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A. 2005;102(39):13807–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Matsui Y, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.

    Article  PubMed  CAS  Google Scholar 

  62. Hein S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.

    Article  PubMed  Google Scholar 

  63. May D, et al. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation. Proc Natl Acad Sci U S A. 2008;105(1):282–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Kelly RF, Sluiter W, McFalls EO. Hibernating myocardium: is the program to survive a pathway to failure? Circ Res. 2008;102(1):3–5.

    Article  PubMed  CAS  Google Scholar 

  65. Bogaard HJ, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.

    Article  PubMed  Google Scholar 

  66. Willis MS, Patterson C. Proteotoxicity and cardiac dysfunction—Alzheimer's disease of the heart? N Engl J Med. 2013;368(5):455–64.

    Article  PubMed  CAS  Google Scholar 

  67. Wang X, Su H, Ranek MJ. Protein quality control and degradation in cardiomyocytes. J Mol Cell Cardiol. 2008;45(1):11–27.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4(2):151–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Haspel JA, Choi AM. Autophagy: a core cellular process with emerging links to pulmonary disease. Am J Respir Crit Care Med. 2011;184(11):1237–46.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mayr M, et al. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol. 2011;50(6):982–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Gomez-Arroyo J, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy due to pulmonary arterial hypertension. Circ Heart Fail. 2013;6(1):136–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Bogaard HJ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60.

    Article  PubMed  CAS  Google Scholar 

  73. Drake JI, et al. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Am J Physiol Genomics. 2013;45(12):449–61.

    Article  CAS  Google Scholar 

  74. Brooks H, et al. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest. 1971;50(10):2176–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Murray PA, et al. Effects of experimental right ventricular hypertrophy on myocardial blood-flow in conscious dogs. J Clin Invest. 1979;64(2):421–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Martinez RR, et al. Nitric oxide contributes to right coronary vasodilation during systemic hypoxia. Am J Physiol Heart Circ Physiol. 2005;288(3):H1139–46.

    Article  PubMed  CAS  Google Scholar 

  77. Huo Y, Linares CO, Kassab GS. Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle. Circ Res. 2007;100(2):273–83.

    Article  PubMed  CAS  Google Scholar 

  78. Olivetti G, et al. Long-term pressure-induced cardiac hypertrophy: capillary and mast cell proliferation. Am J Physiol. 1989;257(6 Pt 2):H1766–72.

    PubMed  CAS  Google Scholar 

  79. Dinicolantonio JJ, et al. Meta-analysis of carvedilol versus beta 1 selective beta-blockers (atenolol, bisoprolol, metoprolol, and nebivolol). Am J Cardiol. 2013;111(5):765–9.

    Article  PubMed  CAS  Google Scholar 

  80. Maurer MS, et al. Mechanisms underlying improvements in ejection fraction with carvedilol in heart failure. Circ Heart Fail. 2009;2(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  81. Kurz T, et al. Differential effects of carvedilol on norepinephrine release in normoxic and ischemic heart. J Cardiovasc Pharmacol. 2000;36(1):96–100.

    Article  PubMed  CAS  Google Scholar 

  82. Cleland JG, et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet. 2003;362(9377):14–21.

    Article  PubMed  CAS  Google Scholar 

  83. Hagberg C, et al. Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda). 2013;28(2):125–34.

    Article  CAS  Google Scholar 

  84. Oka T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485(7397):251–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Piao L, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88(1):47–60.

    Article  CAS  Google Scholar 

  86. Fang YH, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31–43.

    Article  CAS  Google Scholar 

  87. Archer SL, et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 2008;294(2):H570–8.

    Article  PubMed  CAS  Google Scholar 

  88. McKee PA, et al. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert F. Voelkel M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voelkel, N.F., Gomez-Arroyo, J., Abbate, A., Bogaard, H.J. (2015). The Pathobiology of Chronic Right Ventricular Failure. In: Voelkel, N., Schranz, D. (eds) The Right Ventricle in Health and Disease. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1065-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1065-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1064-9

  • Online ISBN: 978-1-4939-1065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics