Skip to main content

A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology

  • Protocol
  • First Online:
Brain Energy Metabolism

Part of the book series: Neuromethods ((NM,volume 90))

Abstract

The cortical brain tissue slice is a reductionist model system of the brain, representing interacting, living cells which operate very similarly to intact brain tissue. Metabolic rates are only slightly slower than in heavily anaesthetised brain, and complications introduced by the blood–brain barrier and peripheral metabolism are removed. In this work, we describe how to make and maintain brain tissue slices in biochemical studies, how to use the technique to conduct neurochemical experiments and how to extract metabolic data using NMR spectroscopy. Finally, we describe the use of metabolomics multivariate statistical approaches for obtaining data-driven outcomes in neuropharmacological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12(3):169–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci U S A 105(49):19498–19503

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. McIlwain H, Buddle HL (1953) Techniques in tissue metabolism. 1. A mechanical chopper. Biochem J 53(3):412

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Newman GC, Hospod FE, Schissel SL (1991) Ischemic brain slice glucose utilization: effects of slice thickness, acidosis and K+. J Cereb Blood Flow Metab 11(3):398–406

    Article  PubMed  CAS  Google Scholar 

  6. Brahma B, Forman RE, Stewart EE, Nicholson C, Rice ME (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74(3):1263–1270

    Article  PubMed  CAS  Google Scholar 

  7. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272(30):18982–18989

    Article  PubMed  CAS  Google Scholar 

  8. Castro MA, Beltran FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110(2):423–440

    Article  PubMed  CAS  Google Scholar 

  9. An JH, Su Y, Radman T, Bikson M (2008) Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Res 1218:77–86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Rae C, Hansen JT, Bubb WA, Bröer S, Bröer A (2005) Alanine transport, metabolism and cycling in the brain. Proc Int Soc Magn Reson Med 2005:2481

    Google Scholar 

  11. Rae C, Hare N, Bubb WA, McEwan SR, Bröer A, McQuillan JA, Balcar VJ, Conigrave AD, Bröer S (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514

    Article  PubMed  CAS  Google Scholar 

  12. Griffin JL, Rae C, Radda GK, Matthews PM (1999) Lactate-induced inhibition of glucose catabolism in guinea pig cortical brain slices. Neurochem Int 35(5):405–409

    Article  PubMed  CAS  Google Scholar 

  13. McIlwain H, Bachelard H (1985) Biochemistry and the central nervous system. Churchill Livingstone, Edinburgh, pp 7–29

    Google Scholar 

  14. Cox DWG, Morris PG, Feeney F, Bachelard HS (1983) 31P MRS studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro. Biochem J 212:365–370

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Badar-Goffer R, Bachelard H, Morris P (1990) Cerebral metabolism of acetate and glucose studied by 13C NMR spectroscopy. Biochem J 266:133–139

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Ben-Joseph O, Bader-Gofer RS, Morris PG, Bachelard HS (1993) Glycerol-3-phosphate and lactate as indicators of cytoplasmic redox state in severe and mild hypoxia respectively; a 13C and 31P NMR study. Biochem J 291:915–919

    Google Scholar 

  17. Nasrallah F, Garner B, Ball GE, Rae C (2008) Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J Neurosci Res 86:208–214

    Article  PubMed  CAS  Google Scholar 

  18. McIlwain H (1953) Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J Neurol Neurosurg Psychiatry 16:257–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. McIlwain H (1951) Metabolic response in vitro to electrical stimulation of sections of mammalian brain. Biochem J 49(3):382–393

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Bollard BM, McIlwain H (1957) Metabolism and metabolic response to electrical pulses in white matter from the central nervous system. Biochem J 66(4):651–655

    PubMed  CAS  PubMed Central  Google Scholar 

  21. McIlwain H (1953) Glucose level, metabolism and response to electrical impulses in cerebral tissues from man and laboratory animals. Biochem J 55:618–624

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75:471–479

    Article  PubMed  CAS  Google Scholar 

  23. Griffin JL, Keun H, Moskau D, Rae C, Nicholson JK (2003) Compartmentation of metabolism probed by [2-13C]alanine: Improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochem Int 42:93–99

    Article  PubMed  CAS  Google Scholar 

  24. Griffin JL, Rae C, Dixon RM, Radda GK, Matthews PM (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71:2477–2486

    Article  PubMed  CAS  Google Scholar 

  25. Bröer S, Bröer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C (2007) Alanine metabolism, transport and cycling in the brain. J Neurochem 102:1758–1770

    Article  PubMed  Google Scholar 

  26. Brand A, Richter-Landsberg C, Leibfritz D (1997) Metabolism of acetate in rat brain neurons, astrocytes and cocultures: metabolic interactions between neurons and glia cells, monitored by NMR spectroscopy. Cell Mol Biol 43:645–657

    PubMed  CAS  Google Scholar 

  27. Carroll PT (1997) Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release. Brain Res 753(1):47–55

    Article  PubMed  CAS  Google Scholar 

  28. Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (1999) Metabolism of (1-13C) glucose and (2-13C, 2-2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by {13C, 2H} NMR spectroscopy. Wierzba, Pergamon-Elsevier Science Ltd, pp 217–228

    Google Scholar 

  29. Waniewski R, Martin D (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  30. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553

    Article  PubMed  CAS  Google Scholar 

  31. Voehler MW, Collier G, Young JK, Stone MP, Germann MW (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183(1):102–109

    Article  PubMed  CAS  Google Scholar 

  32. Gadian DG, Robinson FNH (1979) Radiofrequency losses in NMR experiments on electrically conducting samples. J Magn Reson 34(2):449–455

    CAS  Google Scholar 

  33. Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H NMR spectroscopy. NMR Biomed 15:37–44

    Article  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  35. Kupce E, Freeman R (1995) Adiabatic pulses for wideband inversion and broadband decoupling. J Magn Reson A 115:273–276

    Article  CAS  Google Scholar 

  36. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc B Biol Sci 268(1478):1803–1810

    Article  CAS  Google Scholar 

  37. Goodacre R, Vaidyanathan S, Dunn WB, Gharrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  PubMed  CAS  Google Scholar 

  38. Nicholson JK, Lindon JC, Holmes E (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  PubMed  CAS  Google Scholar 

  39. Rae C, Lawrance ML, Dias LS, Provis T, Bubb WA, Balcar VJ (2000) Strategies for studies of potentially neurotoxic mechanisms involving deficient transport of L-glutamate: antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pigs brain slices. Brain Res Bull 53:373–381

    Article  PubMed  CAS  Google Scholar 

  40. Fonville JM, Richards SE, Barton RH, Boulange CL, Ebbels TMD, Nicholson JK, Holmes E, Dumas ME (2010) The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemometr 24(11–12):636–649

    Article  CAS  Google Scholar 

  41. Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1(1):92–107

    CAS  Google Scholar 

  42. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2013) Databases and software for NMR-based metabolomics. Curr Metabolomics 1(1):28–40

    CAS  Google Scholar 

  43. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  CAS  Google Scholar 

  44. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstrom C, Wold S (2006) Multi- and megavariate data analysis, part 1 basic principles and applications. Umetrics AB, Umea

    Google Scholar 

  45. Coomans D, Broeckaert I, Derde MP, Tassin A, Massart DL, Wold S (1984) Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles. Comput Biomed Res 17(1):1–14

    Article  PubMed  CAS  Google Scholar 

  46. Nasrallah F, Griffin JL, Balcar VJ, Rae C (2009) Understanding your inhibitions. Effects of GABA and GABAA receptors on brain cortical metabolism. J Neurochem 108:57–71

    Article  PubMed  CAS  Google Scholar 

  47. Nasrallah FA, Balcar VJ, Rae C (2010) A metabonomic study of inhibition of GABA uptake in the cerebral cortex. Metabolomics 6:67–77

    Article  CAS  Google Scholar 

  48. Rae C, Nasrallah FA, Griffin JL, Balcar VJ (2009) Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. J Neurochem 109(Suppl 1):109–116

    Article  PubMed  CAS  Google Scholar 

  49. Nasrallah F, Griffin JL, Balcar VJ, Rae C (2007) Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. J Cereb Blood Flow Metab 27:1510–1520

    Article  PubMed  CAS  Google Scholar 

  50. Nasrallah FA, Maher AD, Hanrahan JR, Balcar VJ, Rae CD (2010) γ-Hydroxybutyrate and the GABAergic footprint. A metabolomic approach to unpicking the actions of GHB. J Neurochem 115:58–67

    Article  PubMed  CAS  Google Scholar 

  51. Absalom N, Eghorn LF, Villumsen IS, Karim N, Bay T, Olsen JV, Knudsen GM, Brauner-Osborne H, Frolund B, Clausen RP, Chebib M, Wellendorph P (2012) Alpha 4 beta delta GABA(A) receptors are high-affinity targets for gamma-hydroxybutyric acid (GHB). Proc Natl Acad Sci U S A 109(33):13404–13409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Nasrallah FA, Balcar VJ, Rae CD (2011) Activity dependent GABA release controls brain cortical tissue slice metabolism. J Neurosci Res 89:1935–1945

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Rae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rae, C., Balcar, V.J. (2014). A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology. In: Hirrlinger, J., Waagepetersen, H. (eds) Brain Energy Metabolism. Neuromethods, vol 90. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1059-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1059-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1058-8

  • Online ISBN: 978-1-4939-1059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics