Skip to main content

The Sequence Saturation Mutagenesis (SeSaM) Method

  • Protocol
  • First Online:
Directed Evolution Library Creation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

Sequence Saturation Mutagenesis (SeSaM) is a random mutagenesis method developed to overcome the limitations of existing error-prone PCR (epPCR) protocols. SeSaM is advantageous with respect to (1) elimination of mutagenic “hot spots”, (2) increase in frequency of subsequent nucleotide substitutions, (3) control over the mutational bias through the utilization of universal base analogs, and, consequently, (4) the prospect of generating transversion-enriched mutant libraries. These advanced features lead to chemically diverse mutant libraries on the protein level, essentially making SeSaM a complementary technology to transition biased epPCR mutagenesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32:1448–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zhu L, Verma R, Roccatano D, Ni Y, Sun Z-H, Schwaneberg U (2010) A potential antitumor drug (arginine deiminase) reengineered for efficient operation under physiological conditions. Chembiochem 11:2294–2301

    Article  CAS  PubMed  Google Scholar 

  3. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  PubMed  Google Scholar 

  4. Ruff AJ, Dennig A, Schwaneberg U (2013) To get what we aim for: progress in diversity generation methods. FEBS J 280:2961–2978

    Article  CAS  PubMed  Google Scholar 

  5. Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9:271–288

    Article  CAS  PubMed  Google Scholar 

  6. Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Advances in generating functional diversity for directed protein evolution. Curr Opin Chem Biol 13:19–25

    Article  CAS  PubMed  Google Scholar 

  7. Rogozin IB, Pavlov YI (2003) Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 544:65–85

    Article  CAS  PubMed  Google Scholar 

  8. Wong TS, Roccatano D, Schwaneberg U (2007) Challenges of the genetic code for exploring sequence space in directed protein evolution. Biocatal Biotransformation 25:229–241

    Article  CAS  Google Scholar 

  9. Rasila TS, Pajunen MI, Savilahti H (2009) Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem 388:71–80

    Article  CAS  PubMed  Google Scholar 

  10. Wong TS, Roccatano D, Zacharias M, Schwaneberg U (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355:858–871

    Article  CAS  PubMed  Google Scholar 

  11. Verma R, Schwaneberg U, Roccatano D (2012) MAP2.03D: a sequence/structure based server for protein engineering. ACS Synth Biol 1:139–150

    Article  CAS  PubMed  Google Scholar 

  12. Mundhada H, Marienhagen J, Scacioc A, Schenk A, Roccatano D, Schwaneberg U (2011) SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR. Chembiochem 12:1595–1601

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Roccatano D, Lorenz M, Schwaneberg U (2012) Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease. Chembiochem 13:691–699

    Article  CAS  PubMed  Google Scholar 

  14. Martinez R, Jakob F, Tu R, Siegert P, Maurer K-H, Schwaneberg U (2012) Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution. Biotechnol Bioeng 110:711–720

    Article  PubMed  Google Scholar 

  15. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95:405–418

    Article  CAS  PubMed  Google Scholar 

  16. Wong TS, Roccatano D, Loakes D, Tee KL, Schenk A, Hauer B, Schwaneberg U (2008) Transversion-enriched sequence saturation mutagenesis (SeSaM-Tv+): a random mutagenesis method with consecutive nucleotide exchanges that complements the bias of error-prone PCR. Biotechnol J 3:74–82

    Article  CAS  PubMed  Google Scholar 

  17. Ruff AJ, Marienhagen J, Verma R, Roccatano D, Genieser H-G, Niemann P, Shivange AV, Schwaneberg U (2012) dRTP and dPTP a complementary nucleotide couple for the Sequence Saturation Mutagenesis (SeSaM) method. J Mol Catal B Enzym 84:40–47

    Article  CAS  Google Scholar 

  18. D’Abbadie M, Hofreiter M, Vaisman A, Loakes D, Gasparutto D, Cadet J, Woodgate R, Pääbo S, Holliger P (2007) Molecular breeding of polymerases for amplification of ancient DNA. Nat Biotechnol 25:939–943

    Article  PubMed Central  PubMed  Google Scholar 

  19. Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U (2010) Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 406:141–146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schwaneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruff, A.J., Kardashliev, T., Dennig, A., Schwaneberg, U. (2014). The Sequence Saturation Mutagenesis (SeSaM) Method. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics