Skip to main content

Regenerative Medicine and the Search for Pluripotent/Multipotent Stem Cells

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 869 Accesses

Abstract

Hematopoietic stem cells isolated from bone marrow (BM), mobilized peripheral blood (mPB), and umbilical cord blood (UCB) have been employed for many years as sources of stem cells for hematopoietic transplants. Based on this encouraging experience, regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., heart, brain, or liver). Ideal for this purpose would be pluripotent stem cells (PSCs), which, according to their definition, have broad potential to differentiate into cells from all three germ layers (meso-, ecto-, and endoderm). Based on encouraging data in experimental animals, several types of stem cells isolated from embryonic and adult tissues have been proposed for solid organ regeneration, with some showing promise for treating patients. In this chapter, we will discuss the current status of different types of stem cells that have potential application in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popiela T (2003) Medycyna kliniczna na progu trzeciego millenium—refleksje osobiste. Adv Clin Exp Med 12:405–408

    Google Scholar 

  2. O’Farrell PH, Stumpff J, Su TT (2004) Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14:35–45

    Google Scholar 

  3. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1884

    PubMed  CAS  Google Scholar 

  4. Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217:144–160

    PubMed  CAS  Google Scholar 

  5. Kucia M, Ratajczak J, Ratajczak MZ (2005) Are bone marrow stem cells plastic or heterogenous—that is the question. Exp Hematol 33:613–623

    PubMed  Google Scholar 

  6. Lo B, Kriegstein A, Grady D (2008) Clinical trials in stem cell transplantation: guidelines for scientific and ethical review. Clin Trials 5:517–522

    PubMed  Google Scholar 

  7. Lo B, Zettler P, Cedars MI, Gates E, Kriegstein AR, Oberman M et al (2005) A new era in the ethics of human embryonic stem cell research. Stem Cells 23:1454–1459

    PubMed  Google Scholar 

  8. Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4:3–11

    PubMed  Google Scholar 

  9. Leedham SJ, Brittan M, McDonald SAC, Wright NA (2005) Intestinal stem cells. J Cell Mol 9:11–24

    CAS  Google Scholar 

  10. Ratajczak MZ (2008) Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 15:293–300

    PubMed  Google Scholar 

  11. Lo Celso C, Scadden D (2007) Isolation and transplantation of hematopoietic stem cells (HSCs). J Vis Exp 4:157–162

    Google Scholar 

  12. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    PubMed  CAS  Google Scholar 

  13. Stocum DL, Zupanc GK (2008) Stretching the limits: stem cells in regeneration science. Dev Dyn 237:3648–3671

    PubMed  CAS  Google Scholar 

  14. Zhu WZ, Hauch KD, Xu C, Laflamme MA (2009) Human embryonic stem cells and cardiac repair. Transplant Rev 23:53–68

    CAS  Google Scholar 

  15. Cabrera CM, Cobo F, Nieto A, Concha A (2006) Strategies for preventing immunologic rejection of transplanted human embryonic stem cells. Cytotherapy 8:517–518

    PubMed  CAS  Google Scholar 

  16. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    PubMed  Google Scholar 

  17. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS (2005) Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 33:1526–1530

    PubMed  CAS  Google Scholar 

  18. Hwang WS, Lee BC, Lee CK, Kang SK (2005) Cloned human embryonic stem cells for tissue repair and transplantation. Stem Cell Rev 1:99–109

    PubMed  CAS  Google Scholar 

  19. Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    PubMed  CAS  Google Scholar 

  20. McHugh PR (2004) Zygote and ‘‘clonote’’ - the ethical use of embryonic stem cells. N Engl J Med 351:209–211

    PubMed  CAS  Google Scholar 

  21. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Green RM (2007) Can we develop ethically universal embryonic stem-cell lines? Nat Rev Genet 8:480–485

    PubMed  CAS  Google Scholar 

  23. Tsunoda Y, Kato Y (2002) Recent progress and problems in animal cloning. Differentiation 69:158–161

    PubMed  CAS  Google Scholar 

  24. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  25. Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    PubMed  CAS  Google Scholar 

  26. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    PubMed  CAS  Google Scholar 

  27. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H (2014) Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505:641–647

    PubMed  CAS  Google Scholar 

  28. Obokata H, Sasai Y, Niwa H, Kadota M, Andrabi M, Takata N et al (2014) Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 505:676–680

    PubMed  CAS  Google Scholar 

  29. Ronen D, Benvenisty N (2012) Genomic stability in reprogramming. Curr Opin Genet Dev 22:444–449

    PubMed  CAS  Google Scholar 

  30. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    PubMed  CAS  Google Scholar 

  31. Quesenberry PJ, Abedi M, Aliotta J, Colvin G, Demers D, Dooner M et al (2004) Stem cell plasticity: an overview. Blood Cells Mol Dis 32:1–4

    PubMed  CAS  Google Scholar 

  32. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    PubMed  CAS  Google Scholar 

  33. Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M et al (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186:134–144

    PubMed  CAS  Google Scholar 

  34. Corti S, Locatelli F, Donadoni C, Strazzer S, Salani S, Del Bo R et al (2002) Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J Neurosci Res 70:721–733

    PubMed  CAS  Google Scholar 

  35. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    PubMed  CAS  Google Scholar 

  36. Mezey E, Chandross KJ (2000) Bone marrow: a possible alternative source of cells in the adult nervous system. Eur J Pharmacol 405:297–302

    PubMed  CAS  Google Scholar 

  37. Prockop DJ (2003) Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol 160:807–809

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648

    PubMed  CAS  Google Scholar 

  39. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    PubMed  CAS  Google Scholar 

  40. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299

    PubMed  CAS  Google Scholar 

  41. Lucas JJ, Terada N (2003) Cell fusion and plasticity. Cytotechnology 41:103–109

    PubMed  PubMed Central  Google Scholar 

  42. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    PubMed  CAS  Google Scholar 

  43. Scott EW (2004) Stem cell plasticity or fusion: two approaches to targeted cell therapy. Blood Cells Mol Dis 32:65–67

    PubMed  CAS  Google Scholar 

  44. Eisenberg LM, Eisenberg CA (2003) Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today 69:209–218

    PubMed  CAS  Google Scholar 

  45. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR et al (2001) Platelet- derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–3149

    PubMed  CAS  Google Scholar 

  46. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    PubMed  CAS  Google Scholar 

  47. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ’hide out’ in the bone marrow. Leukemia 18:29–40

    PubMed  CAS  Google Scholar 

  48. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+  stem cells identified in adult bone marrow. Leukemia 20:857–869

    PubMed  CAS  Google Scholar 

  49. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R et al (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255

    PubMed  CAS  Google Scholar 

  50. McGuckin C, Jurga M, Ali H, Strbad M, Forraz N (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3:1046–1055

    PubMed  CAS  Google Scholar 

  51. Howell JC, Lee WH, Morrison P, Zhong J, Yoder MC, Srour EF (2003) Pluripotent stem cells identified in multiple murine tissues. Ann N Y Acad Sci 996:158–173

    PubMed  CAS  Google Scholar 

  52. Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N et al (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Ratajczak MZ, Zuba-Surma EK, Wojakowski W, Ratajczak J, Kucia M (2008) Bone marrow-home of versatile stem cells. Transfus Med Hemother 35:248–259

    PubMed  PubMed Central  Google Scholar 

  54. Kassmer SH, Krause DS (2013) Very small embryonic like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 80:677–690

    PubMed  CAS  Google Scholar 

  55. Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T (2013) Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovarian Res 6:24

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Anjos-Afonso F, Bonnet D (2007) Nonhematopoietic/endothelial SSEA-1+cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109:1298–1306

    PubMed  CAS  Google Scholar 

  57. Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R et al (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    PubMed  CAS  Google Scholar 

  58. Kajstura J, Rota M, Hall SR, Hosoda T, D’Amario D, Sanada F et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–1806

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Atari M, Barajas M, Hernandez-Alfaro F, Gil C, Fabregat M, Ferres Padro E et al (2011) Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26:1057–1070

    PubMed  CAS  Google Scholar 

  60. Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, Dagher R et al (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145:1023–1035

    PubMed  CAS  PubMed Central  Google Scholar 

  61. d’Aquino R, Tirino V, Desiderio V, Studer M, De Angelis GC, Laino L et al (2011) Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. Eur Cell Mater 21:304–316

    PubMed  Google Scholar 

  62. Andreadis D, Bakopoulou A, Leyhausen G, Epivatianos A, Volk J, Markopoulos A et al (2013) Minor salivary glands of the lips: a novel, easily accessible source of potential stem/progenitor cells. Clin Oral Investig [Epub ahead of print]. doi:10.1007/s00784-013-1056-6

    Google Scholar 

  63. Roy S, Gascard P, Dumont N, Zhao J, Pan D, Petrie S et al (2013) Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc Natl Acad Sci U S A 110:4598–4603

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Murrell W, Palmero E, Bianco J, Stangeland B, Joel M, Paulson L et al (2013) Expansion of multipotent stem cells from the adult human brain. PLoS ONE 8:e71334

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Stimpfel M, Skutella T, Cvjeticanin B, Meznaric M, Dovc P, Novakovic S et al (2013) Isolation, characterization and differentiation of cells expressing pluripotent/multipotent markers from adult human ovaries. Cell Tissue Res 354:593–607

    PubMed  Google Scholar 

  66. Dyce PW, Liu J, Tayade C, Kidder GN, Betts DH, Li J (2011) In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PLoS ONE 6:e20339

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Song SH, Kumar BM, Kang EJ, Lee YM, Kim TH, Ock SA et al (2011) Characterization of porcine multipotent stem/stromal cells derived from skin, adipose, and ovarian tissues and their differentiation in vitro into putative oocyte-like cells. Stem Cells Dev 20:1359–1370

    PubMed  CAS  Google Scholar 

  68. Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Ragerdi Kashani I (2012) BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol Int 36:1185–1193

    PubMed  CAS  Google Scholar 

  69. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315

    PubMed  CAS  Google Scholar 

  70. Selesniemi K, Lee HJ, Niikura T, Tilly JL (2009) Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival. Aging 1:49–57

    CAS  PubMed Central  Google Scholar 

  71. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R et al (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663

    PubMed  CAS  Google Scholar 

  72. Heo YT, Lee SH, Yang JH, Kim T, Lee HT (2011) Bone marrow cell-mediated production of transgenic chickens. Lab Invest 91:1229–1240

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Hua J, Yu H, Dong W, Yang C, Gao Z, Lei A et al (2009) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell 41:448–455

    PubMed  CAS  Google Scholar 

  74. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110:3438–3446

    PubMed  CAS  Google Scholar 

  75. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    PubMed  CAS  Google Scholar 

  76. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    PubMed  CAS  Google Scholar 

  77. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    PubMed  PubMed Central  Google Scholar 

  78. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    PubMed  Google Scholar 

  79. Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynska M, Ratajczak J (2012) Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 57:1–17

    PubMed  CAS  Google Scholar 

  80. Jones RJ, Collector MI, Barber JP, Vala MS, Fackler MJ, May WS et al (1996) Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88:487–491

    PubMed  CAS  Google Scholar 

  81. Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH et al (2013) Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells [Epub ahead of print]. doi:10.1002/stem.1413

    Google Scholar 

  82. Wu JH, Wang HJ, Tan YZ, Li ZH (2012) Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction. Stem Cells Dev 21:1367–1379

    PubMed  CAS  Google Scholar 

  83. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8:1391–1415

    PubMed  CAS  Google Scholar 

  84. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A 108:9875–9880

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7:36–45

    PubMed  CAS  Google Scholar 

  86. Vacanti MP, Roy A, Cortiella J, Bonassar L, Vacanti CA (2001) Identification and initial characterization of spore-like cells in adult mammals. J Cell Biochem 80:455–460

    PubMed  CAS  Google Scholar 

  87. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ (2008) Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res 331:125–134

    PubMed  CAS  Google Scholar 

  89. Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard JW, Ratajczak J et al (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 73A:1116–1127

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al (2009) Mobilization of bone marrow-derived Oct-4 +SSEA-4 + very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9

    PubMed  CAS  Google Scholar 

  91. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    PubMed  CAS  Google Scholar 

  92. Marlicz W, Zuba-Surma E, Kucia M, Blogowski W, Starzynska T, Ratajczak MZ (2012) Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn’s disease. Inflamm Bowel Dis 18:1711–1722

    PubMed  Google Scholar 

  93. Drukala J, Paczkowska E, Kucia M, Mlynska E, Krajewski A, Machalinski B et al (2012) Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 8:184–194

    PubMed  CAS  Google Scholar 

  94. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  95. Jones RJ, Wagner JE, Celano P, Zicha MS, Sharkis SJ (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347:188–189

    PubMed  CAS  Google Scholar 

  96. Kassmer SH, Bruscia EM, Zhang PX, Krause DS (2012) Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 30:491–499

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P et al (2008) Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76:843–856

    PubMed  CAS  Google Scholar 

  98. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K et al (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20:1451–1464

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A et al (2013) Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int 2013:690415

    PubMed  PubMed Central  Google Scholar 

  100. Bhartiya D, Kasiviswananthan S, Shaikh A (2012) Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev 21:670–674

    PubMed  CAS  Google Scholar 

  101. Bhartiya D, Unni S, Parte S, Anand S (2013) Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int 2013:682326

    PubMed  PubMed Central  Google Scholar 

  102. Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H et al (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21:1–6

    PubMed  CAS  Google Scholar 

  103. Halasa M, Baskiewicz-Masiuk M, Dabkowska E, Machalinski B (2008) An efficient two-step method to purify very small embryonic-like (VSEL) stem cells from umbilical cord blood (UCB). Folia Histochem Cytobiol 46:239–243

    PubMed  Google Scholar 

  104. Sovalat H, Scrofani M, Eidenschenk A, Pasquet S, Rimelen V, Henon P (2011) Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp Hematol 39:495–505

    PubMed  CAS  Google Scholar 

  105. Havens AM, Shiozawa Y, Jung Y, Sun H, Wang J, McGee S et al (2013) Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells Dev 22:622–630

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Mikhail MA, M’Hamdi H, Welsh J, Levicar N, Marley SB, Nicholls JP et al (2008) High frequency of fetal cells within a primitive stem cell population in maternal blood. Hum Reprod 23:928–933

    PubMed  Google Scholar 

  107. Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925

    PubMed  CAS  Google Scholar 

  108. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, E Z-S (2007) Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 2R01 DK074720 and R01HL112788, the Stella and Henry Endowment, and Maestro grant 2011/02/A/NZ4/00035 to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratajczak, M. (2014). Regenerative Medicine and the Search for Pluripotent/Multipotent Stem Cells. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_1

Download citation

Publish with us

Policies and ethics