Skip to main content

New Biophysical Methods to Study the Membrane Activity of Bcl-2 Proteins

  • Protocol
  • First Online:
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1176))

Abstract

The proteins of Bcl-2 family are key regulators of apoptosis. Many Bcl-2 proteins have the unique ability to switch between two possible conformations, soluble in the cytosol or associated to cellular membranes. Importantly, their membrane-inserted form is the main responsible for their apoptotic function. Unfortunately, there are only a limited number of methods available to study the membrane activity of these proteins. Here, we present a methodology to study protein binding to membranes and membrane permeabilization at the single vesicle level. It is based on purified proteins and giant unilamellar vesicles and involves directly visualization of the process with a confocal microscope. This approach allows for the characterization of the membrane activity of the Bcl-2 proteins (or of any other pore-forming molecule) with unprecedented detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay J, Esposti MD, Gilmore AP (2011) Bcl-2 proteins and mitochondria – specificity in membrane targeting for death. Biochim Biophys Acta 1813:532–539

    Article  CAS  PubMed  Google Scholar 

  3. Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 1813:521–531

    Article  CAS  PubMed  Google Scholar 

  4. Leber B, Geng F, Kale J, Andrews DW (2010) Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med 12:e28

    Article  PubMed  Google Scholar 

  5. Garcia-Saez AJ (2012) The secrets of the Bcl-2 family. Cell Death Differ 19:1733–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Leber B, Lin J, Andrews DW (2010) Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29:5221–5230

    Article  CAS  PubMed  Google Scholar 

  7. Bleicken S, Wagner C, García-Sáez Ana J (2013) Mechanistic differences in the membrane activity of Bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys J 104:421–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Landeta O, Landajuela A, Gil D, Taneva S, DiPrimo C et al (2011) Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 286:8213–8230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C et al (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135:1074–1084

    Article  CAS  PubMed  Google Scholar 

  10. Czabotar Peter E, Westphal D, Dewson G, Ma S, Hockings C et al (2013) Bax crystal structures reveal how BH3 domains activate bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–531

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  PubMed  Google Scholar 

  12. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S et al (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Article  CAS  PubMed  Google Scholar 

  13. Sezgin E, Schwille P (2012) Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 29:144–154

    Article  CAS  PubMed  Google Scholar 

  14. Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. ChemBioChem 11:848–865

    Article  CAS  PubMed  Google Scholar 

  15. Fuertes G, Garcia-Saez AJ, Esteban-Martin S, Gimenez D, Sanchez-Munoz OL et al (2010) Pores formed by Bax alpha 5 relax to a smaller size and keep at equilibrium. Biophys J 99:2917–2925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Apellaniz B, Garcia-Saez AJ, Huarte N, Kunert R, Vorauer-Uhl K et al (2010) Confocal microscopy of giant vesicles supports the absence of HIV-1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids. FEBS Lett 584:1591–1596

    Article  CAS  PubMed  Google Scholar 

  17. Schon P, Garcia-Saez AJ, Malovrh P, Bacia K, Anderluh G et al (2008) Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 95:691–698

    Article  PubMed Central  PubMed  Google Scholar 

  18. Steringer JP, Bleicken S, Andreas H, Zacherl S, Laussmann M et al (2012) Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem 287:27659–27669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bergstrom CL, Beales PA, Lv Y, Vanderlick TK, Groves JT (2013) Cytochrome c causes pore formation in cardiolipin-containing membranes. Proc Natl Acad Sci 110(16):6269–6274

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bleicken S, Garcia-Saez AJ, Conte E, Bordignon E (2012) Dynamic interaction of cBid with detergents, liposomes and mitochondria. PLoS One 7:e35910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bleicken S, Classen M, Padmavathi PV, Ishikawa T, Zeth K et al (2010) Molecular details of Bax activation, oligomerization, and membrane insertion. J Biol Chem 285:6636–6647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hermann et al (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu102

  23. Dimitrov DS, Angelova MI (1986) Swelling and electroswelling of lipids theory and experiment. Stud Biophys 113:15–20

    CAS  Google Scholar 

  24. Dimitrov DS, Angelova MI (1988) Lipid swelling and liposome formation mediated by electric-fields. Bioelectrochem Bioenerg 19:323–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana J. García-Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bleicken, S., García-Sáez, A.J. (2014). New Biophysical Methods to Study the Membrane Activity of Bcl-2 Proteins. In: Wajapeyee, N. (eds) Cancer Genomics and Proteomics. Methods in Molecular Biology, vol 1176. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0992-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0992-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0991-9

  • Online ISBN: 978-1-4939-0992-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics