Skip to main content

Development of the Human Kidney: Immunohistochemical Findings

  • Chapter
  • First Online:
Kidney Development in Renal Pathology

Abstract

The development of the human kidney is a complex process that requires interactions among multiple cell types of different embryological origin, including multipotential/stem cells, epithelial and mesenchymal cells: moreover, all these cell types undergo, during fetal kidney development, multiple steps of cellular differentiation, some of which have not well defined and characterized yet. The coordinate development of multiple highly specialized epithelial, vascular, and stromal cell types is a peculiar feature of the kidney architectural and functional complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dressler GR. The cellular basis of kidney development. Annu Rev Cell Dev Biol. 2006;22:509–29.

    Article  CAS  PubMed  Google Scholar 

  2. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, Fanos V. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol. 2012;227:1257–68.

    Article  CAS  PubMed  Google Scholar 

  3. Kreidberg JA, Saviola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    Article  CAS  PubMed  Google Scholar 

  4. Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA. Angioblast mesenchyme induction of early kidney development is mediated by WT1 and Vegfa. Development. 2005;132:5437–49.

    Article  CAS  PubMed  Google Scholar 

  5. Kreidberg JA. WT1 and kidney progenitor cells. Organogenesis. 2010;6:61–70.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fanni D, Fanos V, Monga G, Gerosa C, Locci A, Nemolato S, et al. Expression of WT1 during normal human kidney development. J Matern Fetal Neonatal Med. 2011;24 Suppl 2:44–7.

    Article  PubMed  Google Scholar 

  7. Hartwig S, Ho J, Pandey P, Maclsaac K, Tagliaenti M, Xiang M, et al. Genomic characterization of Wilms’ tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development. 2010;137: 1189–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Faa G, Gerosa C, Fanni D, Nemolato S, Di Felice E, Van Eyken P, et al. The role of immunohistochemistry in the study of the newborn kidney. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:127–30.

    Article  Google Scholar 

  9. Locci G, Gerosa C, Ravarino A, Senes G, Fanni D. CD44 immunoreactivity in diabetic nephropathy and the developing human kidney: a marker of renal progenitor stem cells. JPNIM. 2012;1:138–9.

    Google Scholar 

  10. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol. 2009;332:273–86.

    Article  CAS  PubMed  Google Scholar 

  11. Fanni D, Gerosa C, Nemolato S, Mocci C, Pichiri G, Coni P, et al. “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true? J Matern Fetal Neonatal Med. 2012;25 Suppl 3:41–8.

    Article  PubMed  Google Scholar 

  12. Sorenson CM. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995;268:F73–81.

    CAS  PubMed  Google Scholar 

  13. Korsmeyer SJ. Bcl-2/Bas: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–32.

    CAS  PubMed  Google Scholar 

  14. Faa G, Gerosa C, Fanni D, Nemolato S, Di Felice E, Van Eyken P, et al. The role of immunohistochemistry in the study of the newborn kidney. J Matern Fetal Neonatal Med. 2012;25(S4):135–8.

    Article  PubMed  Google Scholar 

  15. Di Felice E, Fanni D, Nemolato S, Zurrida V, Murgianu I, Gariel D, Gerosa C. hCTR1 expression in the developing kidney: how copper is involved in human nephrogenesis. JPNIM. 2012;1:120–1.

    Google Scholar 

  16. Rumballe B, Georgas K, Wilkinson L, Little M. Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics? Pediatr Nephrol. 2010;25:1005–6.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fanni D, Fanos V, Monga G, Gerosa C, Nemolato S, Locci A, et al. MUC1 in mesenchymal-to-epithelial transition during human nephrogenesis: changing the fate of renal progenitor/stem cells? J Matern Fetal Neonatal Med. 2011;24 Suppl 2:63–6.

    Article  PubMed  Google Scholar 

  18. Fanni D, Iacovidou N, Locci A, Gerosa C, Nemolato S, Van Eyken P, et al. MUC1 marks collecting tubules, renal vesicles, comma- and S-shaped bodies in human developing kidney tubules, renal vesicles, comma- and s-shaped bodies in human kidney. Eur J Histochem. 2012;56:e40. doi:10.4081/ejh.2012.e40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Faa G, Gerosa C, Fanni D, Nemolato S, Marinelli V, Locci A, et al. CD10 in the developing human kidney: immunoreactivity and possible role in renal embryogenesis. J Matern Fetal Neonatal Med. 2012;25:904–11.

    Article  CAS  PubMed  Google Scholar 

  20. Gerosa C, Fanni D, Puxeddu E, Piludu M, Piras M, Furno M, Faa G, Fanos V. Perinatal programming and the kidney: how can immunohistochemistry and electron microscopy improve our knowledge? Acta Med Port. 2012;25(S2):121–8.

    Google Scholar 

  21. Fatima H, Moeller MJ, Smeets B, Yang H-C, Fogo AB. Parietal epithelial cell activation distinguishes early recurrence of FSGS in the transplant from minimal change disease. Mod Pathol. 2011;24(S1):344A.

    Google Scholar 

  22. Nemolato S, Cabras T, Fanari MU, Cau F, Fanni D, Gerosa C, et al. Immunoreactivity of thymosin beta 4 in human foetal and adult genitourinary tract. Eur J Histochem. 2010;54(4):e43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Coni P, Nemolato S, Di Felice E, Sanna A, Ottonello G, Cabras T, et al. Thymosin beta-4 translocation from the trans-Golgi network to the nucleus in kidney proximal tubule cell line LLC-PK1 under starvation. J Matern Fetal Neonatal Med. 2012;1:119–20.

    Google Scholar 

  24. Cannas AR, Deiana R, Milia MA, Muscas B, Paderi S, Serra S, et al. PAS and Weigert methods: two old stains for a new interpretation of the newborn kidney [abstract]. J Pediatr Neonatal Individualized Med. 2012;1:139.

    Google Scholar 

  25. Faa G, Gerosa C, Fanni D, Nemolato S, Monga G, Fanos V. Kidney embryogenesis: how to look at old things with new eyes. In: Fanos V, Chevalier RL, Faa G, Cataldi L, editors. Developmental nephrology: from embryology to metabolomics. Quartu Sant’Elena: Hygeia Press; 2011. p. 23–45.

    Google Scholar 

  26. Eremina V, Baelde HJ, Quaggin SE. Role of VEGF-a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol. 2007;106:32–7.

    Article  Google Scholar 

  27. Fonseca Ferraz ML, Dos Santos AM, Cavellani CL, Rossi RC, Correa RR, Dos Reis MA, de Paula Antunes Teixeira V, da Cunha Castro EC. Histochemical and immunohistochemical study of the glomerular development in human fetuses. Pediatr Nephrol. 2008;23:257–62.

    Article  PubMed  Google Scholar 

  28. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver J, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, Hill WD, Martin-Studdard A, Hess DC, Ogawa M. Hematopoietic origin of glomerular mesangial cells. Blood. 2003;101:2215–8.

    Article  CAS  PubMed  Google Scholar 

  30. Abe T, Fleming PA, Masuya M, Minamiguchi H, Drake CJ, Ogawa M. Granulocyte/macrophage origin of glomerular mesangial cells. Int J Hematol. 2005;82:115–8.

    Article  PubMed  Google Scholar 

  31. Wellik D. HOX genes and kidney development. Pediatr Nephrol. 2011;26:1559–65.

    Article  PubMed  Google Scholar 

  32. Boor P, Floege J. The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant. 2012;27:3027–36.

    Article  PubMed  Google Scholar 

  33. Goodpaster T, Legesse-Miller A, Hameed MR, Aisner SC, Randolph-Habecker J, Coller HA. An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 2008;56:347–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol. 2007;39:666–7.

    CAS  PubMed  Google Scholar 

  35. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Trowe MO, Airik R, Weiss AC, Farin HF, Foik AB, Bettenhausen E, Schuster-Gossler K, Taketo MM, Kispert A. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development. 2012;139:3099–108.

    Article  CAS  PubMed  Google Scholar 

  37. Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A. Hydroureteronephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet. 2010;19: 4918–29.

    Article  CAS  PubMed  Google Scholar 

  38. Herzlinger D. The pelvis-kidney junction contains HCN3 a hyperpolarization-activated cation channel that triggers ureter peristalsis. In: 11th international workshop on developmental nephrology, August 24–27. New Paltz: Oral Presentation O-35; 2010.

    Google Scholar 

  39. Kuvel M, Canguven O, Murtazaoglu M, Albayrak S. Distribution of Cajal like cells and innervation in intrinsic ureteropelvic junction obstruction. Arch Ital Urol Androl. 2011;83:128–32.

    PubMed  Google Scholar 

  40. Chevalier RL. Obstructive uropathy: state of the art. In: Fanos V, Chevalier RL, Faa G, Cataldi L, editors. Developmental nephrology: from embryology to metabolomics. Quartu Sant’Elena: Hygeia Press; 2011. p. 47–56.

    Google Scholar 

  41. Little MH, Brennan J, Georgas K, et al. A high resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns. 2007;7: 680–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kurtz L, Madsen K, Kurt B, Jensen BL, Walter S, Banas B, Wagner C, Kurtz A. High-level connexin expression in the human juxtaglomerular apparatus. Nephron Physiol. 2010;116:1–8.

    Article  Google Scholar 

  43. Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C. Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol. 2007;18(4):1103–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavino Faa M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fanni, D., Gerosa, C., Van Eyken, P., Gibo, Y., Faa, G. (2014). Development of the Human Kidney: Immunohistochemical Findings. In: Faa, G., Fanos, V. (eds) Kidney Development in Renal Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0947-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0947-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0946-9

  • Online ISBN: 978-1-4939-0947-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics