Skip to main content

Analyzing Sister Chromatid Cohesion in Mammalian Cells

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

The metaphase chromosome spread technique and subsequent analysis of sister chromatid cohesion is used for (clinical) diagnosis of genetic abnormalities that can cause aberrant sister chromatid cohesion. In addition, the technique can be used to assess the contribution of novel genes to the cohesion establishment and maintenance pathways. Cells are swelled in a hypotonic solution and fixed in Carnoy’s solution. Samples are then dropped onto glass slides, and the spread chromosomes are stained and visualized by microscopy. Defects in sister chromatid cohesion can be easily assessed using this method, examples of which are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricke RM, van Ree JH, van Deursen JM (2008) Whole chromosome instability and cancer: a complex relationship. Trends Genet 24:457–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Weaver BA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18:658–667

    Article  CAS  PubMed  Google Scholar 

  3. Feeney KM, Wasson CW, Parish JL (2010) Cohesin: a regulator of genome integrity and gene expression. Biochem J 428:147–161

    Article  CAS  PubMed  Google Scholar 

  4. Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45

    Article  CAS  PubMed  Google Scholar 

  5. Haering CH, Lowe J, Hochwagen A et al (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  CAS  PubMed  Google Scholar 

  6. Lengronne A, Katou Y, Mori S, Yokobayashi S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Darwiche N, Freeman LA, Strunnikov A (1999) Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233:39–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ciosk R, Shirayama M, Shevchenko A et al (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254

    Article  CAS  PubMed  Google Scholar 

  9. Kurze A, Michie KA, Dixon SE et al (2011) A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J 30:364–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Whelan G, Kreidl E, Peters JM et al (2012) The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions. Nucleus 3:330–334

    Article  PubMed  Google Scholar 

  11. Zhang J, Shi X, Li Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151

    Article  CAS  PubMed  Google Scholar 

  12. Nishiyama T, Ladurner R, Schmitz J et al (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143:737–749

    Article  CAS  PubMed  Google Scholar 

  13. Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nishiyama T, Sykora MM, Huis in’t Veld PJ et al (2013) Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. PNAS 110:13404–13409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sumara I, Vorlaufer E, Stukenberg PT et al (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9:515–525

    Article  CAS  PubMed  Google Scholar 

  16. Waizenegger IC, Hauf S, Meinke A et al (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Rankin S, Yu H (2013) Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol 15:40–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shintomi K, Hirano T (2010) Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 119:459–467

    Article  PubMed  Google Scholar 

  19. van der Lelij P, Chrzanowska KH, Godthelp BC et al (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86:262–266

    Article  PubMed Central  PubMed  Google Scholar 

  20. Inoue A, Li T, Roby SK, Valentine MB et al (2007) Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6:1646–1654

    Article  CAS  PubMed  Google Scholar 

  21. Parish JL, Rosa J, Wang X et al (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119:4857–4865

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JP is supported by a Royal Society University Research Fellowship (UF110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna L. Parish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feeney, K.M., McFarlane-Majeed, L., Parish, J.L. (2014). Analyzing Sister Chromatid Cohesion in Mammalian Cells. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics