Skip to main content

Magnets and Magnetic Field Effects

  • Chapter
  • First Online:
Accelerator Physics at the Tevatron Collider

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 988 Accesses

Abstract

The magnets of the circular accelerators that comprise the Fermilab complex have contributed to, responded to, and solved a string of accelerator physics issues. Most importantly, the magnets are supposed to generate high quality magnetic fields needed for stable long-term dynamics of the particles circulating in the rings. The quality of the transverse magnetic field B is given by the multipole coefficients in the expansion:

$$ {B}_x+i\cdot {B}_y={B}_0{\displaystyle \sum_{n=0}\left({b}_n+i{a}_n\right){\left[\frac{x+ iy}{R_0}\right]}^n}, $$
(3.1)

where R 0 is the reference radius (1 in. in the Fermilab accelerators), the pole number is 2(n + 1) and b n (a n ) are the normal (skew) multipole coefficients, and b 0 is unity. For example, the multipoles allowed by dipole symmetry, b 2, b 4, b 6, … are designed to be small and would be 0 for a pure cos θ coil winding. The precise coil placement, and hence good magnetic field uniformity at the relative level of the multipole coefficients of few 10−4, had the biggest effect on the accelerator performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E.L. Hubbard (ed.), Booster Synchrotron, FERMILAB-TM-0405, Batavia, IL, 1973

    Google Scholar 

  2. E.J. Prebys et al., New corrector system for the Fermilab booster, in Proceedings of IEEE PAC07, Albuquerque, NM, 2007, p. 467

    Google Scholar 

  3. W. Pellico, New booster multi-pole correctors commissioning. Presentation to the Fermilab all experimenters meeting, Batavia, IL, 11 October 2010

    Google Scholar 

  4. J. Lackey et al., Operation and performance of the new Fermilab booster H-injection system, in Proceedings of IEEE PAC07, Albuquerque, NM, 2007, p. 1709

    Google Scholar 

  5. C. Hojvat et al., The multiturn charge exchange injection system for the Fermilab booster accelerator. IEEE Trans. Nucl. Sci. NS-26(3), 3149 (1979)

    Article  ADS  Google Scholar 

  6. D. McGinnis, Status of the Fermilab booster after the 400 MeV upgrade, in Proceedings of EPAC1994, London, England, 1994, p. 497

    Google Scholar 

  7. W. Chou et al., Fermilab booster modeling and space charge study, in Proceedings of IEEE PAC03, Portland, OR, 2003, p. 2925

    Google Scholar 

  8. F.T. Cole (ed.), Design Report National Accelerator Laboratory, Oak Brook, IL, January 1968

    Google Scholar 

  9. F.T. Cole (ed.), Design Report Tevatron 1 Project, Batavia, IL, 1984

    Google Scholar 

  10. P.S. Martin (ed.), The Fermilab Main Injector Technical Design Report, Batavia, IL, 1995

    Google Scholar 

  11. D.J. Harding et al., Strength and shape of the magnetic field of the Fermilab main injector dipoles, in Proceedings of IEEE PAC09, New York, NY, 1999, p. 3318, and references therein

    Google Scholar 

  12. D.J. Harding et al., Magnetic field strength and shape measurements of the Fermilab main injector quadrupoles, in Proceedings of IEEE PAC97, Vancouver, BC, 1997, p. 3269

    Google Scholar 

  13. W. Chou et al., Operational aspects of the main injector large aperture quadrupole (WQB), in Proceedings of IEEE PAC07, Albuquerque, NM, 2007, p. 1685

    Google Scholar 

  14. G.P. Jackson (ed.), Fermilab Recycler Ring, Technical Design Report, FERMILAB-TM-1991, 1996

    Google Scholar 

  15. F.T. Cole et al. (eds.), A Report on the Design of the Fermi National Accelerator Laboratory Superconducting Accelerator, Batavia, IL, 1979

    Google Scholar 

  16. A.V. Tollestrup, The Amateur Magnet Builder’s Handbook, Fermilab-UPC-086, Batavia, IL, 1979

    Google Scholar 

  17. N.M. Gelfand, Tune drifts on the Tevatron front porch, in Proceedings of PAC07, Albuquerque, NM, 2007, p. 1691

    Google Scholar 

  18. R. Hanft, B. Brown, D. Herrup, M. Lamm, A. McInturff, M. Syphers, Fermilab Preprint TM-1542, 1988

    Google Scholar 

  19. K.-H. Mess, P. Scmusser, S. Wolff, Superconducting Accelerator Magnets (World Scientific Publishing Co. Pte. Ltd., Singapore, 1996)

    Book  Google Scholar 

  20. D. Herrup et al., Phys. Rev. E 49(6), 5660 (1994)

    Article  ADS  Google Scholar 

  21. D. Finley, D. Edwards, R. Hanft, R. Johnson, A. McInturff, J. Strait, Fermilab Preprint FN-451, 1987

    Google Scholar 

  22. J. Annala et al., in Proceedings of 2005 IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 54

    Google Scholar 

  23. J. Volk et al., Tevatron alignment issues 2003–2004, in Proceedings of 2005 IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 2146

    Google Scholar 

  24. J. Holt et al., Calculating luminosity for a coupled Tevatron lattice, in Proceedings of 1995 IEEE Particle Accelerator Conference, Dallas, TX, 1996, p. 456

    Google Scholar 

  25. N. Gelfand, Coupling in the Tevatron, in Proceedings of 1995 IEEE Particle Accelerator Conference, Dallas, TX, 1996, p. 452

    Google Scholar 

  26. M. Syphers, Strong systematic steering correction in regions of the Tevatron, Fermilab Internal Report Beams-doc-491, 2003

    Google Scholar 

  27. M. Syphers, D. Harding, Deterioration of the skew quadrupole moment in Tevatron dipoles over time, in Proceedings of 2005 IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 1967

    Google Scholar 

  28. M. Syphers et al., Observations of strong transverse coupling in the Tevatron, in Proceedings of 2005 IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 2029

    Google Scholar 

  29. E. Caulfield, Investigation of Creep Behavior of the Glass Reinforced Composite Stand-Offs (Packer Engineering Associates Inc., New York, NY, 1981)

    Google Scholar 

  30. G. Kobliska to D. Harding, private communication

    Google Scholar 

  31. M. Syphers, Skew Quadrupole tuning and vertical dispersion in the Tevatron, Fermilab Beams-doc-611, 2003

    Google Scholar 

  32. G. Ambrosio et al., Results of an investigation of the skew quadrupole issue in Tevatron dipoles, Fermilab Internal Note TD-03-045, 2003

    Google Scholar 

  33. R. Hanft et al., Magnetic field properties of Fermilab energy saver dipoles, in Proceedings of 1983 IEEE Particle Accelerator Conference, Santa Fe, NM, 1983, p. 3381

    Google Scholar 

  34. J. Blowers et al., Reshimming of Tevatron dipoles: a process-quality and lessons-learned perspective, in Proceedings of 2005 IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 3156

    Google Scholar 

  35. G.W. Foster, in Proceedings of 1995 IEEE Particle Accelerator Conference, Dallas, TX, 1995, pp. 1298–1300

    Google Scholar 

  36. G.W. Foster et al., in Proceedings of 1998 European Particle Accelerator Conference, Stockholm, Sweden, 1998, pp. 189–193

    Google Scholar 

  37. H.D. Glass et al., in Proceedings of 1997 IEEE Particle Accelerator Conference, Vancouver, BC, 1997, p. 3260–3262

    Google Scholar 

  38. J. Volk, J. Instrum. 6, T08003 (2011)

    Article  Google Scholar 

  39. G.W. Foster et al., in Proceedings of 1999 IEEE Particle Accelerator Conference, New York, NY, 1999, pp. 3324–3326

    Google Scholar 

  40. H.D. Glass et al., in Proceedings of 1997 IEEE Particle Accelerator Conference, Vancouver, BC, 1997, pp. 3286–3287

    Google Scholar 

  41. G.W. Foster et al., in Proceedings of 1997 IEEE Particle Accelerator Conference, Vancouver, BC, 1997, pp. 3280–3282

    Google Scholar 

  42. J. Volk et al., in Proceedings of 2003 IEEE Particle Accelerator Conference, Portland, OR, 2003, pp. 1766–1768

    Google Scholar 

  43. S.D. Holmes, V.D. Shiltsev, The legacy of the Tevatron in the area of accelerator science. Annu. Rev. Nucl. Part. Sci. 63, 435–465 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shiltsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Annala, J., Harding, D., Shiltsev, V., Syphers, M., Volk, J. (2014). Magnets and Magnetic Field Effects. In: Lebedev, V., Shiltsev, V. (eds) Accelerator Physics at the Tevatron Collider. Particle Acceleration and Detection. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0885-1_3

Download citation

Publish with us

Policies and ethics